EECS 318 CAD **Computer Aided Design** ECTURE 5: AOIs, WITH-SELECT-WHEN, WHEN-ELSE

Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please viewshow

CMOS logic gate: review

GND

CMOS logic gate: layout sizes (1X output drive)

AOI: AND-OR-Invert gates

Suppose you want to transform a circuit to all nands & nots

AOI: AND-OR-Invert gates

- Although, there were no tricks to make AND gates better
- AOIs provide a way at the gate level to use less transistors than separate ANDs and a NORs
- ASIC design logic builds upon a standard logic cell library, therefore, do not optimize transistors only logic gates
- For example, 2-wide 2-input AOI will only use 8 transistors

 Whereas 2 ANDs (12 transistors) and 1 NOR (4 transistors) will use a total of 16 transistors {14 by DeMorgans law}

AOI: AND-OR-Invert cmos 2x2 example

For example, 2-wide 2-input AOI (2x2 AOI)

O <= NOT((D1 AND C1) NOR (B1 AND A1));

AOI: AND-OR-Invert cmos 2x2 example

• This means AOIs use less chip area, less power, and delay

AOI: other Standard Cell examples

AOI22 Cell: 2x2 AOI (8 transistors) Y <= (A AND B) NOR (C AND D);

AOI23 Cell: 2x3 AOI (10 transistors) Y <= (A AND B) NOR (C AND D AND E);

AOI21 Cell: 2x1 AOI (6 transistors) Y <= (A AND B) NOR C;

Total transistors = 2 times # inputs

AOI: XOR implementation

The XOR is not as easy as it appears Y <= (A AND NOT B) OR (NOT B AND A);

This design uses 22 transistors

Y <= NOT(A XNOR B);

Y <= NOT((A AND B) OR (NOT B AND NOT A)); This newer design uses 18 transistors

But wait, we can exploit the AOI22 structure now we have 4+4+2+2=12 transistors

Y <= NOT((A AND B) OR (B NOR A));

Finally, by applying DeMorgan's law

The total of transistors is now 10

OAI: Or-And-Invert

Or-And-Inverts are dual of the AOIs

with-select-when: 2-to-1 Multiplexor

CWRU EECS 318

with-select-when: 2 to 4-line Decoder

ROM: 4 byte Read Only Memory

(**•**(

ROM: 4 byte Read Only Memory

ENTITY rom_4x8 IS PORT(A: IN std_logic_vector(1 downto 0); OE: IN std_logic; -- Tri-State Output D: OUT std_logic_vector(7 downto 0)

); END;

ARCHITECTURE rom_4x8_arch OF rom_4x8 IS SIGNAL ROMout: std_logic_vector(7 downto 0); BEGIN BufferOut: TriStateBuffer GENERIC MAP(8) PORT MAP(D, ROMout, OE); WITH A SELECT ROMout <= "01000001" WHEN "00", "111111011" WHEN "01", "00000110" WHEN "10",

when-else: 2-to-1 Multiplexor

with-select-when: 4-to-1 Multiplexor

As long as each WHEN-ELSE condition is mutually exclusive,

then it is equivalent to the WITH-SELECT statement. Y <=a WHEN s = "00" ELSE b WHEN s = "01" ELSE c WHEN s = "10" ELSE d ;

when-else: 2-level priority selector

when-else: 3-level priority selector

when-else: 2-Bit Priority Encoder (~74LS148)

- Priority encoders are typically used as interrupt controllers
- The example below is based on the 74LS148

I ₃	I ₂	I ₁	I ₀	G _S	A ₁	A ₀
0	Χ	X	X	0	0	0
1	0	Χ	X	0	0	1
1	1	0	X	0	1	0
1	1	1	0	0	1	1
1	1	1	1	1	1	1

when-else: 2-Bit Priority Encoder (~74LS148)

when-else: 2-Bit Priority Encoder (~74LS148)

'0' WHEN OTHERS;