
CWRU EECS 318

EECS 318 CAD
Computer Aided Design

EECS 318 CAD
Computer Aided Design

LECTURE 5:
 AOIs,

WITH-SELECT-WHEN,
WHEN-ELSE

LECTURE 5:
 AOIs,

WITH-SELECT-WHEN,
WHEN-ELSE

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

CWRU EECS 318

DeMorgan’s laws: review

X Y = X + Y

X Y = X + Y

X + Y = X Y

X + Y = X Y

General Rule: 1. Exchange the AND with OR
2. Invert the NOTs

CWRU EECS 318

CMOS logic gate: review

4 transistors 4 transistors 2 transistors

CWRU EECS 318

CMOS logic gate: layout sizes (1X output drive)

CWRU EECS 318

AOI: AND-OR-Invert gates

• Suppose you want to transform a circuit to all nands & nots

16 transistors6

6
4

4

4

2

2
4

4

4
4 2

Final 14 TransistorsFinal 14 Transistors

CWRU EECS 318

AOI: AND-OR-Invert gates

• AOIs provide a way at the gate level to use less transistors
 than separate ANDs and a NORs

• ASIC design logic builds upon a standard logic cell library,
 therefore, do not optimize transistors only logic gates

• For example, 2-wide 2-input AOI will only use 8 transistors

• Whereas 2 ANDs (12 transistors) and 1 NOR (4 transistors)
will use a total of 16 transistors {14 by DeMorgans law}

4

4
4 2

• Although, there were no tricks to make AND gates better

CWRU EECS 318

AOI: AND-OR-Invert cmos 2x2 example

• For example, 2-wide 2-input AOI (2x2 AOI)

O <= NOT((D1 AND C1) NOR (B1 AND A1));

CWRU EECS 318

AOI: AND-OR-Invert cmos 2x2 example

• This means AOIs use less chip area, less power, and delay

CWRU EECS 318

AOI: other Standard Cell examples

AOI22 Cell: 2x2 AOI (8 transistors)
 Y <= (A AND B) NOR (C AND D);

AOI23 Cell: 2x3 AOI (10 transistors)
 Y <= (A AND B) NOR (C AND D AND E);

 AOI21 Cell: 2x1 AOI (6 transistors)
 Y <= (A AND B) NOR C;

 Total transistors = 2 times # inputs

CWRU EECS 318

AOI: XOR implementation

 The XOR is not as easy as it appears

 Y <= NOT((A AND B) OR (NOT B AND NOT A));

8

8

6

 This design uses 22 transistors

 Y <= (A AND NOT B) OR (NOT B AND A);

 Y <= NOT(A XNOR B);

6

8

4
This newer design uses 18 transistors

 But wait, we can exploit the AOI22 structure
now we have 4+4+2+2=12 transistors

 Y <= NOT((A AND B) OR (B NOR A));
4

4 2
 The total of transistors is now 10

 Finally, by applying DeMorgan’s law

CWRU EECS 318

OAI: Or-And-Invert

• Or-And-Inverts are dual of the AOIs

CWRU EECS 318

with-select-when: 2-to-1 Multiplexor

0

1

a

b

S

Y

a

b

Y

S

Y <= (a AND NOT s)
 OR

 (b AND s);

Y <= (a AND NOT s)
 OR

 (b AND s);

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN OTHERS;

or alternatively

structural

combinatorial logic

behavioral

Only
values
allowed

Only
values
allowed

6

6

62

20 Transistors

CWRU EECS 318

with-select-when: 2 to 4-line Decoder

WITH S SELECT
 Y <= “1000” WHEN “11”,

 “0100” WHEN “10”,
 “0010” WHEN “01”,
 “0001” WHEN OTHERS;

WITH S SELECT
 Y <= “1000” WHEN “11”,

 “0100” WHEN “10”,
 “0010” WHEN “01”,
 “0001” WHEN OTHERS;

Y1

Y0

Y2

Y3

S0

S1

SIGNAL S: std_logic_vector(1 downto 0);

SIGNAL Y: std_logic_vector(3 downto 0);

SIGNAL S: std_logic_vector(1 downto 0);

SIGNAL Y: std_logic_vector(3 downto 0);

S1 S0

Y1

Y0

Y2

Y36

8

8

10

32 Transistors

Replace this
with a NOR,
then 26 total
transistors

Replace this
with a NOR,
then 26 total
transistors

CWRU EECS 318

ROM: 4 byte Read Only Memory

Y1

Y0

Y2

Y3

A0

A1

D7 D6 D5 D4 D3 D2 D1 D0

OE

4 byte by 8 bit
ROM ARRAY

CWRU EECS 318

ROM: 4 byte Read Only Memory

ENTITY rom_4x8 IS
PORT(A: IN std_logic_vector(1 downto 0);

OE: IN std_logic; -- Tri-State Output
D: OUT std_logic_vector(7 downto 0)

); END;

ENTITY rom_4x8 IS
PORT(A: IN std_logic_vector(1 downto 0);

OE: IN std_logic; -- Tri-State Output
D: OUT std_logic_vector(7 downto 0)

); END;

ARCHITECTURE rom_4x8_arch OF rom_4x8 IS
SIGNAL ROMout: std_logic_vector(7 downto 0);

BEGIN
 BufferOut: TriStateBuffer GENERIC MAP(8)

 PORT MAP(D, ROMout, OE);
 WITH A SELECT

ROMout <= “01000001” WHEN “00”,
 “11111011” WHEN “01”,

 “00000110” WHEN “10”,
 “00000000” WHEN “11”;

ARCHITECTURE rom_4x8_arch OF rom_4x8 IS
SIGNAL ROMout: std_logic_vector(7 downto 0);

BEGIN
 BufferOut: TriStateBuffer GENERIC MAP(8)

 PORT MAP(D, ROMout, OE);
 WITH A SELECT

ROMout <= “01000001” WHEN “00”,
 “11111011” WHEN “01”,

 “00000110” WHEN “10”,
 “00000000” WHEN “11”;

CWRU EECS 318

when-else: 2-to-1 Multiplexor

0

1

a

b

S

Y

WITH s SELECT
 Y <= a WHEN ‘0’,
 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,
 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,
 b WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN ‘0’,
 b WHEN OTHERS;

or alternatively

Y <= a WHEN s = ‘0’ ELSE
 b WHEN s = ‘1’;

Y <= a WHEN s = ‘0’ ELSE
 b WHEN s = ‘1’;

Y <= a WHEN s = ‘0’ ELSE
 b;

Y <= a WHEN s = ‘0’ ELSE
 b;

WHEN-ELSE condition
allows a condition as part
of the WHEN

whereas the WITH-SELECT
only allows only a value as
part of the WHEN.

WHEN-ELSE condition
allows a condition as part
of the WHEN

whereas the WITH-SELECT
only allows only a value as
part of the WHEN.

CWRU EECS 318

with-select-when: 4-to-1 Multiplexor

WITH s SELECT
 Y <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

a

b

c

d

S

Y

00

01

10

11

Y <=a WHEN s = “00” ELSE
 b WHEN s = “01” ELSE
 c WHEN s = “10” ELSE
 d ;

Y <=a WHEN s = “00” ELSE
 b WHEN s = “01” ELSE
 c WHEN s = “10” ELSE
 d ;

As long as each WHEN-
ELSE condition is
mutually exclusive,

then it is equivalent to
the WITH-SELECT
statement.

As long as each WHEN-
ELSE condition is
mutually exclusive,

then it is equivalent to
the WITH-SELECT
statement.

CWRU EECS 318

when-else: 2-level priority selector

Y <= a WHEN s(1) = ‘1’
ELSE
 b WHEN s(0) = ‘1’
ELSE
 ‘0’;

Y <= a WHEN s(1) = ‘1’
ELSE
 b WHEN s(0) = ‘1’
ELSE
 ‘0’;

WITH s SELECT
 Y <= a WHEN “11”,

a WHEN “10”,
b WHEN “01”,

 ‘0’ WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN “11”,

a WHEN “10”,
b WHEN “01”,

 ‘0’ WHEN OTHERS;

a

b

Y

S1 S0

WHEN-ELSE are useful for
sequential or priority
encoders

WITH-SELECT-WHEN are
useful for parallel or
multiplexors

WHEN-ELSE are useful for
sequential or priority
encoders

WITH-SELECT-WHEN are
useful for parallel or
multiplexors

6

10

6

22 Transistors

CWRU EECS 318

when-else: 3-level priority selector

Y <= a WHEN s(2) = ‘1’ ELSE
 b WHEN s(1) = ‘1’ ELSE
 c WHEN s(0) = ‘1’ ELSE
 ‘0’;

Y <= a WHEN s(2) = ‘1’ ELSE
 b WHEN s(1) = ‘1’ ELSE
 c WHEN s(0) = ‘1’ ELSE
 ‘0’;

WITH s SELECT
 Y <= a WHEN “111”,

a WHEN “110”,
a WHEN “101”,
a WHEN “100”,
b WHEN “011”,
b WHEN “010”,
c WHEN “001”,

 ‘0’ WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN “111”,

a WHEN “110”,
a WHEN “101”,
a WHEN “100”,
b WHEN “011”,
b WHEN “010”,
c WHEN “001”,

 ‘0’ WHEN OTHERS;

a

b

c

Y

S1 S0S2

6

10
8

22 Transistors

14

CWRU EECS 318

when-else: 2-Bit Priority Encoder (~74LS148)

I1
I0

I2
A0

A1

GSI3

• Priority encoders are typically used as interrupt controllers

• The example below is based on the 74LS148

I3 I2 I1 I0 GS A1 A0

0 X X X 0 0 0
1 0 X X 0 0 1
1 1 0 X 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

I3 I2 I1 I0 GS A1 A0

0 X X X 0 0 0
1 0 X X 0 0 1
1 1 0 X 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

CWRU EECS 318

when-else: 2-Bit Priority Encoder (~74LS148)

I1
I0

I2
A0

A1

GSI3

A <= “00” WHEN I3 = 0 ELSE
 “01” WHEN I2 = 0 ELSE
 “10” WHEN I1 = 0 ELSE
 “11” WHEN I0 = 0 ELSE
 “11” WHEN OTHERS;

A <= “00” WHEN I3 = 0 ELSE
 “01” WHEN I2 = 0 ELSE
 “10” WHEN I1 = 0 ELSE
 “11” WHEN I0 = 0 ELSE
 “11” WHEN OTHERS;

ENTITY PriEn2 IS PORT(
I: IN std_logic_vector(3 downto 0);
GS: OUT std_logic;
A: OUT std_logic_vector(1 downto 0);
); END;

ENTITY PriEn2 IS PORT(
I: IN std_logic_vector(3 downto 0);
GS: OUT std_logic;
A: OUT std_logic_vector(1 downto 0);
); END;

I3 I2 I1 I0 GS A1 A0

0 X X X 0 0 0
1 0 X X 0 0 1
1 1 0 X 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

I3 I2 I1 I0 GS A1 A0

0 X X X 0 0 0
1 0 X X 0 0 1
1 1 0 X 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

CWRU EECS 318

when-else: 2-Bit Priority Encoder (~74LS148)

I1
I0

I2
A0

A1

GSI3

I3 I2 I1 I0 GS A1 A0

0 X X X 0 0 0
1 0 X X 0 0 1
1 1 0 X 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

I3 I2 I1 I0 GS A1 A0

0 X X X 0 0 0
1 0 X X 0 0 1
1 1 0 X 0 1 0
1 1 1 0 0 1 1
1 1 1 1 1 1 1

GS <= NOT(NOT(I3) OR NOT(I2)
 OR NOT(I1) OR NOT(I0))

GS <= NOT(NOT(I3) OR NOT(I2)
 OR NOT(I1) OR NOT(I0))

Structural model

GS <= WITH I SELECT
‘1’ WHEN “1111”,
‘0’ WHEN OTHERS;

GS <= WITH I SELECT
‘1’ WHEN “1111”,
‘0’ WHEN OTHERS;

Behavioral model

GS <= I3 AND I2 AND I1 AND I0GS <= I3 AND I2 AND I1 AND I0

Structural model

