
CWRU EECS 318

EECS 318 CAD
Computer Aided Design

EECS 318 CAD
Computer Aided Design

LECTURE 4:
Delay models & std_ulogic

LECTURE 4:
Delay models & std_ulogic

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

CWRU EECS 318

Delta Delay

CWRU EECS 318

Delta Delay: Example using scheduling

CWRU EECS 318

Inertial Delay

CWRU EECS 318

Transport Delay

CWRU EECS 318

Inertial and Transport Delay

Sig

a

b

Inertial Delay is useful for modeling logic gates

Transport Delay is useful for modeling data buses, networks

CWRU EECS 318

Combinatorial Logic Operators

AND z <= x AND y;

NAND z <= NOT (x AND y);

NOR z <= NOT (x OR Y);

OR z <= x OR y;

NOT z <= NOT (x); z<= NOT x;

XOR z <= (x and NOT y) OR (NOT x AND y);
z <= (x AND y) NOR (x NOR y); --AOI

XNOR z <= (x and y) OR (NOT x AND NOT y);
z <= (x NAND y) NAND (x OR y); --OAI

2

2+2i

2i

2+2i

2i

10

10

#Transistors

Footnote: (i=#inputs) We are only referring to CMOS static transistor ASIC gate designs
Exotic XOR designs can be done in 6 (J. W. Wang, IEEE J. Solid State Circuits, 29, July 1994)

CWRU EECS 318

Std_logic AND: Un-initialized value

AND 0 1 U

0 0 0 0

1 0 1 U

U 0 U U

OR 0 1 U

0 0 1 U

1 1 1 1

U U 1 U

0 AND <anything> is 0

0 NAND <anything> is 1

1 OR <anything> is 1

1 NOR <anything> is 0

NOT 0 1 U

1 0 U

CWRU EECS 318

Std_logic AND: X Forcing Unknown Value

AND 0 X 1 U

0 0 0 0 0

X 0 X X U

1 0 X 1 U

U 0 U U U

0 AND <anything> is 0

0 NAND <anything> is 1

OR 0 X 1 U

0 0 X 1 U

X X X 1 U

1 1 1 1 1

U U U 1 U

1 OR <anything> is 0

0 NOR <anything> is 1

NOT 0 X 1 U

1 X 0 U

CWRU EECS 318

Modeling logic gate values: std_ulogic

‘1’, -- Forcing 1

‘H’, -- Weak 1

‘L’, -- Weak 0

‘X’, -- Forcing Unknown: i.e. combining 0 and 1

TYPE std_ulogic IS (-- Unresolved LOGIC
‘Z’, -- High Impedance (Tri-State)

‘0’, -- Forcing 0

‘U’, -- Un-initialized

‘W’, -- Weak Unknown: i.e. combining H and L

‘-’, -- Don’t care
);

Example:
multiple drivers

Example:
multiple drivers

0
1

1
1

1
 X

0

CWRU EECS 318

X

The rising transition signal

L

W

H

1
> 3.85 Volts

Vcc=5.5 25°C

0
< 1.65 Volts

Unknown
2.20 Volt
gap

CWRU EECS 318

Multiple output drivers: Resolution Function

U X 0 L Z W H 1 -

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 0 0 0 0 X X

L U X 0 L L W W 1 X

Z U X 0 L Z W H 1 X

W U X 0 W W W W 1 X

H U X 0 W H W H 1 X

1 U X X 1 1 1 1 1 X

- U X X X X X X X X

Suppose that
the first gate outputs a 1
the second gate outputs a 0

then
the mult-driver output is X
X: forcing unknown value by
combining 1 and 0 together

Suppose that
the first gate outputs a 1
the second gate outputs a 0

then
the mult-driver output is X
X: forcing unknown value by
combining 1 and 0 together

CWRU EECS 318

Multiple output drivers: Resolution Function

U X 0 L Z W H 1 -

U U U U U U U U U U

X X X X X X X X X

0 0 0 0 0 0 X X

L L L W W 1 X

Z Z W H 1 X

W W W 1 X

H H 1 X

1 1 X

- X

• Note the multi-driver resolution table is symmetrical

Observe that 0
pulls down all
weak signals to 0

Observe that 0
pulls down all
weak signals to 0

H <driving> L => WH <driving> L => W

CWRU EECS 318

Resolution Function: std_logic buffer gate

input: U 0 L W X Z H 1 -

output:U 0 0 X X X 1 1 X

 0 or L becomes 0 0 or L becomes 0 H or 1 becomes 1 H or 1 becomes 1

 Transition zone becomes X Transition zone becomes X

 1
 H
 W, Z
 L
0

 1
 1
 X
 0
0

std_logic

std_ulogic

CWRU EECS 318

Resolving input: std_logic AND GATE

Process each input as an unresolved to resolved buffer.

std_ulogic

std_ulogic

For example, let’s transform z <= ‘W’ AND ‘1’;

std_logic
std_logic

std_logic

Then process the gate as a standard logic gate { 0, X, 1, U }

 z <= ‘W’ AND ‘1’; -- convert std_ulogic ‘W’ to std_logic ‘X’

W

1

 z <= ‘X’ AND ‘1’; -- now compute the std_logic AND

X

1

 z <= ‘X’;

X

CWRU EECS 318

2-to-1 Multiplexor: with-select-when

0

1

a

b

S

Y

a

b

Y

S

Y <= sa OR sb;

sa <= a AND NOT s;

sb <= b AND s;

Y <= sa OR sb;

sa <= a AND NOT s;

sb <= b AND s;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN OTHERS;

or alternatively

structural

combinatorial logic

behavioral

Only
values
allowed

Only
values
allowed

CWRU EECS 318

4-to-1 Multiplexor: with-select-when

Y <= sa OR sb OR sc OR sd;

sa <= a AND (NOT s(1) AND NOT s(0));

sb <= b AND (NOT s(1) AND s(0));

sc <= c AND (s(1) AND NOT s(0));

sd <= d AND (s(1) AND s(0));

Y <= sa OR sb OR sc OR sd;

sa <= a AND (NOT s(1) AND NOT s(0));

sb <= b AND (NOT s(1) AND s(0));

sc <= c AND (s(1) AND NOT s(0));

sd <= d AND (s(1) AND s(0));

WITH s SELECT
 Y <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

WITH s SELECT
 Y <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

a

b

c

d

S

Y

00

01

10

11

As the complexity of the
combinatorial logic grows,
the SELECT statement,
simplifies logic design
but at a loss of structural
information

Structural Combinatorial logic

behavioral

CWRU EECS 318

Tri-State buffer

oe

yx

ENTITY Buffer_Tri_State IS
PORT(x: IN std_logic;
 y: OUT std_logic;
 oe: IN std_logic

); END;

ENTITY Buffer_Tri_State IS
PORT(x: IN std_logic;
 y: OUT std_logic;
 oe: IN std_logic

); END;

ARCHITECTURE Buffer3 OF Buffer_Tri_State IS
BEGIN

WITH oe SELECT
y <= x WHEN ‘1’, -- Enabled: y <= x;

‘Z’ WHEN ‘0’; -- Disabled: output a tri-state

END;

CWRU EECS 318

Assignment #2 (Part 1 of 3) Due Thurs, 9/14

1) Assume each gate is 10 ns delay for the above circuit.

(a) Write entity-architecture for a inertial model
(b) Given the following waveform, draw, R, S, Q, NQ (inertial)
 R <= ‘0’, ‘1’ after 25 ns, ‘0’ after 30 ns;
 S <= ‘1’, ‘0’ after 20 ns, ‘1’ after 35 ns, ‘0’ after 50 ns;

(c) Write entity-architecture for a transport model
(d) Given the waveform in (b) draw, R, S, Q, NQ (transport)

CWRU EECS 318

Assignment #2 (Part 2 of 3)

X

F

Y

a

(2) Given the above two tri-state buffers connected together
(assume transport model of 5ns per gate), draw X, Y, F, a, b,
G for the following input waveforms:
 X <= ‘1’, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘L’ after 30 ns, ‘1’ after 40 ns;
 Y <= ‘0’, ‘L’ after 10 ns, ‘W’ after 20 ns, ‘Z’ after 30 ns, 0 after 40 ns;
 F <= ‘0’, ‘1’ after 10 ns, ‘0’ after 50 ns;

G
b

CWRU EECS 318

Assignment #2 (Part 3 of 3)

3a) Write (no programming) a entity-architecture for a 1-bit
ALU. The input will consist of x, y, Cin, f and the output will
be S and Cout. Use as many sub-components as possible.
The input function f will enable the following operations:

 function f ALU bit operation
 000 S = 0 Cout = 0
 001 S = x
 010 S = y
 011 S = x AND y
 100 S = x OR y
 101 S = x XOR y
 110 (Cout, S) = x + y + Cin;
 111 (Cout, S) = full subtractor

3b) Calculate the number of transistors for the 1-bit ALU
3c) Write a entity-architecture for a N-bit ALU (for-generate)

x ALU
y
Cin f

S
Cout

