EECS 318 CAD

Con;ﬁwtér#ﬂ;@ﬁd@esl ol

o) 19

THEVHDL 1\ Cbit Ider

Instructer: Francis:G. Wolff

Case Western Reserve Unlver5|ty

Full Adder: Truth Table

o A Fuli-Adderis a Combinational circiif that forms the
arithmetic sum of three input bits.

* It consists of three inputs (z, x, y) and two outputs (Carry, Sitm)

as shown.
~J o oo o1 1o
0 1| |1
I X ¥y C 5 1 1 |1|
0 0 O 0 0
0 0 1 0 1 s =x Dy @z
0 1 1| ! 0
1 0 O 0 1 s
1 0 1 1 0 - (1] 01 11 10
1 1 0 1 0
1 1 1 1 1 0
1 1 |1 Jf 1 |
Trmth Tahle
e

=xy +txz tyz =xy+z Oy

EKarnaugh maps

Combinatorial Logic Operators

/A e
NOT z <= NOT (x); z<=NOT x;
AND Z<=xX ANDYy;
NAND z <= NOT (x AND y);
OR z<=x ORYy;
NOR z <= NOT (x ORY);
XOR z <= (x and NOT y) OR (NOT x AND vy);

XNOR z <= (x andy) OR (NOT x AND NOT y);

CWRU EECS 318

o)

Full Adder: Architecture Entity Declaration
A — —L——L—ﬁi

ENTITY full adder IS
PORT (x, vV, z: IN std_logic;
Sum, Carry: OUT std_logic

) END full_adder; Optional Entity END name;
4 Architecture Declaration I

ARCHITECTURE full adder arch 1 OF full adder IS
BEGIN

Sum <= ((x XOR vy) XOR z);

Carry <= ((x AND vy) OR (z AND (x AND y)));
END full adder arch 1;

Optional Architecture END name;

SIGNAL: Scheduled Event

= "
e

53

>
® SIGNAL
Like variables in a programming language such as C,
sighals can be assigned values, e.q. 0, 1

® However, SIGNALSs also have an associated time value
A signal receives a value at a specific point in time

and retains that value until it receives a new value
at a future point in time (i.e. scheduled event)

® The waveform of the signal is
a sequence of values assigned to a signal over time

® For example
wave <= ‘0’, ‘1’ after 10 ns, ‘0O’ after 15 ns, ‘1’ after 25 ns;

Wwave

Full Adder: Architecture with

Delay

@H i | o ='_:1"
]_—,, | — 3 _'n___;\'\ S1Ei1d
i/
o)
_==_é'_‘-} -____a______ . .
ARCHITECTURE full adder arch 2 OF full adder IS I
SIGNAL S1, S2, S3: std_|ogiCi [. : :
BEGIN Signals (like wires)
sl <=(aXORDb) after 15 ns; are not PORTSs they
s2 <=(c_in AND s1) after 5 ns; do not have
s3 <=(aANDDb) after 5 ns; direction
Sum <=(sl1l XOR c_in) after 15 ns; : T
Carry <=(s2ORs3) after 5ns; (1e. IN, OUT)

END;

CWRU EECS 318

Signal order: Does it matter? No

&

ARCHITECTURE full adder arch 2 OF full adder 1S
SIGNAL S1, S2, S3: std_logic;

BEGIN

END;

sl <=(aXORb)

after 15 ns:

s2 <=(c_in AND s1) after 5 ns;

s3 <=(aANDbDb)

after 5 ns:

Sum <= (sl XOR c_in) after 15 ns;

Carry <=(s20R s3)

after 5 ns;

ARCHITECTURE full adder arch 3 OF full adder 1S
SIGNAL S1, S2, S3: std_logic;

BEGIN

END;

Carry <=(s20R s3)

after 5 ns;

Sum <= (sl XOR c_in) after 15 ns;

s3 <=(aANDbDb)

after 5 ns:

s2 <=(c_in AND s1) after 5 ns;

sl <=(aXORb)

after 15 ns:

CWRU EECS 318

The Ripple-Carry n-Bit Binary Parallel Adder

Cin

Y

F.A.[™~S

v

Cout

A

Ci-1

A E A Lesi

bi —»

CE1h0 M ewton

el—)

a0 -
b0—e

F.A.

—=-50

o]
b1 —=

F.A.

— 5

oy

fen

-1

AN —f

bn—e=

F.A.

——-Ch

£.2.10

Hierarchical design: 2-bit adder
> =

I
L;E}

® The design interface to a two bit adder is

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL,;

ENTITY adder_bits 2 IS

PORT (Cin: IN std_logic;
a0, b0, al, bl: IN std logic;
SO, S1: OUT std_logic;
Cout: OUT std_logic
); END;

® Note: that the ports are positional dependant
(C|n1 ao, b01 a11 bll 801 811 COUt) CWRU EECS 318

Hierarchical design: Component Instance
7 ———

o)

Component Declaration

ARCHITECTURE #Ople 2 arch OF adder_bits 2 IS
COMPONENT full adder
PORT (X, Y.z IN std_logic; Sum, Cagry: OUT std_logic);
END COMPON :
SIGNAL t1: std_logic

BEGIN
FALl: full adder PORT MAP (Cin, a0, b0, SO, t1);

R&2: full atsgr PORT MAP (i1, al, b1, s1, Cout);

Component instance #1 called FA1l

END;

Component instance #2 called FA2

CWRU EECS 318

Positional versus Named Associlation
% e

I
L;E}

® Positional Association (must match the port order)

FA1: full _ adder PORT MAP (Cin, a0, b0, SO, t1);

® Named Association: signal => port_name

FA1: full adder PORT
MAP (Cin=>x, a0=>y, b0=>z, SO=>Sum, t1=>Carry);

FA1: full adder PORT
MAP (Cin=>x, a0=>y, b0=>z, t1=>Carry, SO=>Sum);

FA1: full adder PORT
MAP (t1=>Carry, SO=>Sum, a0=>y, b0=>z, Cin=>Xx);

Component by Named Association
» ——

I
L;E}

ARCHITECTURE ripple_2 arch OF adder_bits 2 IS

COMPONENT full adder
PORT (X, V, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;
SIGNAL t1: std_logic; -- Temporary carry signal
BEGIN

-- Named association
FA1: full adder POR

MAP (Cin=>x, a0f>y, b0=>z, SO=>Sum, t1=>Carry);

END; -- Comments start with a double dash

CWRU EECS 318

Using vectors: std _logic_vector

e

I
L;E}

PORT (Cin:

SO, S1:
Cout:

); END;

® By using vectors, there is less typing of variables, aO/al, ...

a0, b0, al, bl: IN std logic;

ENTITY adder_bits 2 IS

IN std_logic;

OUT std_logic;
OUT std_logic

PORT (Cin:

ENTITY adder_bits 2 IS

IN std_logic;

IN std logic_vector(1 downto 0);
OUT std_logic_vector(1 downto 0);
OUT std_logic

CWRU EECS 318

2-bit Ripple adder using std _logic_vector

o)

e) o
L — -.-'i

T
R ———
e =

® Note, the signal variable usage is now different:
a0 becomes a(0)

ARCHITECTURE ripple_2 _arch OF addet_bits 2 1S

COMPONENT full _adder
PORT (X, VY, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL tl1: std_logic; -- Temporary caryy signal
BEGIN ¥

FAL: full adder PORT MAP (Cin, a(0), b(0), S(0), t1);

FA2: full_adder PORT MAP (t1, a(1), b(1), s(1), Cout);
END:;

CWRU EECS 318

4-bit Ripple adder using std _logic_vector

o)

d —
ARCHITECTURE ripple 4 arch OF adder_bits 4 1S

COMPONENT full adder
PORT (X, V, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;
SIGNAL t: std_logic_vector(3 downto 1);
BEGIN

FA1: full adder PORT MAP (Cin, a(0), b(0), S(0), t(1));
FA2: full_adder PORT MAP (t(1), a(1), b(1), S(1), t(2));

FA3: full adder PORT MAP (t(2), a(2), b(2), S(2), t(3));
FA4: full adder PORT MAP (t(3), a(3), b(3), S(3), Cout);
END;

® std _vectors make it easier to replicate structures I

CWRU EECS 318

For-Generate statement: first improvement

o)

ARCHITECTURE ripple 4 arch OF adder_bits 4 1S

COMPONENT full _adder
PORT (X, vy, z: IN std_logic; Sum, Carry: OUT std_logic);
END COMPONENT;

SIGNAL t: std logic_vector(3 downto 1);
CONSTANT n:_ INTEGER :=4;

BEGIN N Constants never change value I

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t(1));

FA f: foriin 1to n-2 generate
A 1. full_adder PORT MAP (t(i), a(i), b(i), S(1), t(i+1));

FA4: full _ad
END;

PORT MAP (t(n), a(n), b(n), S(n), Cout);

LABEL: before the for is not optional

CWRU EECS 318

For-Generate statement: second improvement

ARCHITECTURE ripple 4 arch OF adder_bits 4 1S

COMPONENT full adder
PORT (X, vy, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t: std logic_vector(4 downto 0);
CONSTANT n: INTEGER :=4;

BEGIN
t(0) <=Cin; Cout <=1t(n)
FA_f: foriin Oto n-1 generate

FA_i: full adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));
end generate,

END;

Keep track of vector sizes

CWRU EECS 318

N-bit adder using generic
e —

I
L;E}

ENTITY adder_bits 4 1S

PORT (Cin: IN std_logic;
a, b: IN std logic_vector(3 downto 0);
S: OUT std_logic_vector(3 downto 0);

Cout: OUT std_logic

® By using generics, the design can be generalized

ENTITY adder bits n IS Default case Is 2
GENERIC(n: INTEGER := 2);
PORT (Cin: IN std logic;
a, b: IN std logic_vector(n-1 downto 0);
S: OUT std_logic_vector(n-1 downto 0);
Cout: OUT std_logic
); END;

For-Generate statement: third improvement

o)

e) o
— — L — -.-'i
3 T
R ———
e =

ARCHITECTURE ripple_n_arch OF adder_bits n IS

COMPONENT full _adder
PORT (X, VY, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t: std logic_vector(n downto 0);
BEGIN

t(0) <=Cin; Cout <=t(n);

FA: foriin Oto n-1 generate
FA _i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

end generate;
END;

CWRU EECS 318

Stimulus Only Test Bench Architecture

I
L;E}

A%CHITECTURE tb OF tb_adder 4 1S

COMPONENT adder bits n
GENERIC(n: INTEGER := 2);
PORT (Cin: IN std_logic;
a, b: std_logic_vector(n-1 downto 0);
S: OU ’std_logic_vector(n-1 downto 0);
Cout: OUT s

END COMPONENT;

SIGNAL X,Y,Sum: std _logic\
SIGNAL c, Cout: std_logic;

BEGIN
X <=*“0000", “0001” after 50 ns, “0101%_ after 100 ns;
y <=*"“0010", “0011" after 50 ns, “1010”, after 100 ns;

c <='1’, ‘O’ after 50 ns; _
UUT _ADDER 4: adder bits n GENERIC MAP(4) Override
PORT MAP (c, x, y, Sum, Cout); default

END;

ector(n downto 0);

CWRU EECS 318

Stimulus Only Test Bench Entity

A 0
ENTITY tb_adder_4 IS
PORT (Sum: std_logic_vector(3 downto 0);
Cout: std_logic
); END;

The output of the testbench will be observe by the digital
waveform of the simulator.

CWRU EECS 318

