
CWRU EECS 318

EECS 318 CAD
Computer Aided Design

EECS 318 CAD
Computer Aided Design

LECTURE 2: The VHDL AdderLECTURE 2: The VHDL Adder

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University

CWRU EECS 318

SoC: System on a chip (beyond Processor)

• The 2001 prediction: SoC’s will be > 12M gates

CWRU EECS 318

ASIC and SoC Design flow

CWRU EECS 318

Modelling types

• Behavioral model
• Explicit definition of mathematical relationship between

input and output

• No implementation information

• It can exist at multiple levels of abstraction
• Dataflow, procedural, state machines, …

• Structural model
• A representation of a system in terms of

interconnections (netlist) of a set of defined component

• Components can be described structurally or
behaviorally

CWRU EECS 318

Adder: behavior, netlist, transistor, layout

Behavioral model Structural model

CWRU EECS 318

Full Adder: alternative structural models

Are the behavioral models the same?

CWRU EECS 318

Why VHDL?

• The Complexity and Size of Digital Systems leads
to
• Breadboards and prototypes which are too costly

• Software and hardware interactions which are difficult to
analyze without prototypes or simulations

• Difficulty in communicating accurate design information

• Want to be able to target design to a new technology
while using same descriptions or reuse parts of design
(IP)

CWRU EECS 318

Half Adder

• A Half-adder is a Combinatorial circuit that performs the
arithmetic sum of two bits.

• It consists of two inputs (x, y) and two outputs (Sum,
Carry) as shown.

X Y Carry Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Behavioral Truth Table

Carry <= X AND Y;

Sum <= X XOR Y;

CWRU EECS 318

Half Adder: behavioral properties

• Event property
The event on a, from 1 to 0, changes the output

What are the behavioral properties of the half-adder ciruit?

• Propagation delay property
The output changes after 5ns propagation delay

• Concurrency property: Both XOR & AND gates compute
 new output values concurrently when an input changes state

CWRU EECS 318

Half Adder: Design Entity

• Design entity
A component of a system whose behavior is to be
described and simulated

• Components to the description

• entity declaration
The interface to the design
There can only be one interface declared

• architecture construct
The internal behavior or structure of the design
There can be many different architectures

• configuration
 bind a component instance to an entity-architecture pair

CWRU EECS 318

Half Adder: Entity

ENTITY half_adder IS
PORT (

a, b: IN std_logic;
sum, carry: OUT std_logic

);
END half_adder;

ENTITY half_adder IS
PORT (

a, b: IN std_logic;
sum, carry: OUT std_logic

);
END half_adder;

• All keyword in capitals by convention

• VHDL is case insensitive for keywords as well as variables

• The semicolon is a statement separator not a terminator

• std_logic is data type which denotes a logic bit
(U, X, 0, 1, Z, W, L, H, -)

• BIT could be used instead of std_logic but it is only (0, 1)

a Sum

b Carry

a Sum

b Carry

CWRU EECS 318

Half Adder: Architecture

ENTITY half_adder IS
PORT (

a, b: IN std_logic;
Sum, Carry: OUT std_logic

);
END half_adder;

ENTITY half_adder IS
PORT (

a, b: IN std_logic;
Sum, Carry: OUT std_logic

);
END half_adder;

ARCHITECTURE half_adder_arch_1 OF half_adder IS

BEGIN

Sum <= a XOR b;

Carry <= a AND b;

END half_adder_arch_1;

ARCHITECTURE half_adder_arch_1 OF half_adder IS

BEGIN

Sum <= a XOR b;

Carry <= a AND b;

END half_adder_arch_1;

must
refer to
entity
name

must
refer to
entity
name

CWRU EECS 318

Half Adder: Architecture with Delay

ENTITY half_adder IS
PORT (

a, b: IN std_logic;
Sum, Carry: OUT std_logic

);
END half_adder;

ENTITY half_adder IS
PORT (

a, b: IN std_logic;
Sum, Carry: OUT std_logic

);
END half_adder;

ARCHITECTURE half_adder_arch_2 OF half_adder IS

BEGIN

Sum <= (a XOR b) after 5 ns;

Carry <= (a AND b) after 5 ns;

END half_adder_arch_2;

ARCHITECTURE half_adder_arch_2 OF half_adder IS

BEGIN

Sum <= (a XOR b) after 5 ns;

Carry <= (a AND b) after 5 ns;

END half_adder_arch_2;

CWRU EECS 318

CWRU EECS 318

Full Adder: Architecture

ENTITY full_adder IS
PORT (

x, y, z: IN std_logic;
Sum, Carry: OUT std_logic

);
END full_adder;

ENTITY full_adder IS
PORT (

x, y, z: IN std_logic;
Sum, Carry: OUT std_logic

);
END full_adder;

ARCHITECTURE full_adder_arch_1 OF full_adder IS

BEGIN

Sum <= ((x XOR y) XOR z);

Carry <= ((x AND y) OR (z AND (x AND y)));

END full_adder_arch_1;

ARCHITECTURE full_adder_arch_1 OF full_adder IS

BEGIN

Sum <= ((x XOR y) XOR z);

Carry <= ((x AND y) OR (z AND (x AND y)));

END full_adder_arch_1;

CWRU EECS 318

Full Adder: Architecture with Delay

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END full_adder_arch_2;

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END full_adder_arch_2;

CWRU EECS 318

SIGNAL: Scheduled Event

• SIGNAL
Like variables in a programming language such as C,
signals can be assigned values, e.g. 0, 1

• However, SIGNALs also have an associated time value
A signal receives a value at a specific point in time
and retains that value until it receives a new value

at a future point in time (i.e. scheduled event)

• For example
 wave <= ‘0’, ‘1’ after 10 ns, ‘0’ after 15 ns, ‘1’ after 25 ns;

• The waveform of the signal is
a sequence of values assigned to a signal over time

CWRU EECS 318

CWRU EECS 318

Hierarchical design: 2 bit adder

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY adder_bits_2 IS

PORT (

Carry_In: IN std_logic;
a1, b1, a2, b2: IN std_logic;
Sum1, Sum2: OUT std_logic;
Carry_Out: OUT std_logic

)

END adder_bits_2;

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY adder_bits_2 IS

PORT (

Carry_In: IN std_logic;
a1, b1, a2, b2: IN std_logic;
Sum1, Sum2: OUT std_logic;
Carry_Out: OUT std_logic

)

END adder_bits_2;

• The design interface to a two bit adder is

• Note: that the ports are positional dependant
 (Carry_In, a1, b1, a2, b2, Sum1, Sum2, Carry_out)

CWRU EECS 318

Hierarchical designs: Ripple Structural Model

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL c1: std_logic;

BEGIN
FA1: full_adder PORT MAP (Carry_in, a1, b1, Sum1, c1);

FA2: full_adder PORT MAP (c1, a2, b2, Sum2, Carry_Out);

END ripple_2_arch;

CWRU EECS 318

CWRU EECS 318

CWRU EECS 318

Assignment #1

(1) Using the full_adder_arch_2,
a <= ‘1’, ‘0’ after 20 ns;
b <= ‘0’, ‘1’ after 10 ns, ‘0’ after 15 ns, ‘1’ after 25 ns;
c_in <= ‘0’, ‘1’ after 10 ns;

Hand draw the signal waveforms for
a, b, c_in, s1, s2, s3, sum, c_out

(2) Write the entity and architecture for the full subtractor

(3) Write the entity and architecture for a 4 bit subtractor

Note: this is a hand written assignment, no programming.
Although, you may want to type it in using a Word Processor.

