
EECS 318 CAD
Computer Aided Design

EECS 318 CAD
Computer Aided Design

LECTURE 10:
 Improving Memory Access:

Direct and Spatial caches

LECTURE 10:
 Improving Memory Access:

Direct and Spatial caches

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

The Art of Memory System Design

Processor

$

MEM

Memory

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization
to minimize the average memory access time
for typical workloads

Workload or
Benchmark
programs

Pipelining and the cache (Designing…,M.J.Quinn, ‘87)

Instruction Pipelining is the use of pipelining to allow more
than one instruction to be in some stage of execution at the
same time.

Ferranti ATLAS (1963):
•••• Pipelining reduced the average time per instruction by 375%
•••• Memory could not keep up with the CPU, needed a cache.

Cache memory is a small, fast memory unit used as a buffer
between a processor and primary memory

Principle of Locality

• Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

• Two types of locality

• Temporal locality (locality in time)
 If an item is referenced, then

the same item will tend to be referenced soon
 “the tendency to reuse recently accessed data items”

• Spatial locality (locality in space)
 If an item is referenced, then

nearby items will be referenced soon
 “the tendency to reference nearby data items”

Memory Hierarchy

RegistersRegisters

PipeliningPipelining

Cache memoryCache memory

Primary real memoryPrimary real memory

Virtual memory (Disk, swapping)Virtual memory (Disk, swapping)

F
a

s
te

r

C
h

ea
p

e
r

C
o

st
 $

$$

M
o

re
 C

ap
a

ci
ty

CPUCPU

Memory Hierarchy of a Modern Computer System

• By taking advantage of the principle of locality:

–Present the user with as much memory as is
available in the cheapest technology.

–Provide access at the speed offered by the fastest
technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n

-C
h

ip
C

ach
e

1s 10,000,000s
 (10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage
(Disk)

10,000,000,000s
 (10s sec)

Ts

Cache Memory Technology: SRAM 1 bit cell layout

Memories Technology and Principle of Locality

• Faster Memories are more expensive per bit

Memory
Technology

Typical access
time

$ per Mbyte in
1997

SRAM 5-25 ns $100-$250

DRAM 60-120 ns $5-$10

Magnetic Disk 10-20 million ns $0.10-$0.20

• Slower Memories are usually smaller in area size per bit

Cache Memory Technology: SRAM

• Why use SRAM (Static Random Access Memory)?

see reference: http://www.chips.ibm.com/products/memory/sramoperations/sramop.html

• Speed.
 The primary advantage of an SRAM over DRAM is speed.

 The fastest DRAMs on the market still require 5 to 10
 processor clock cycles to access the first bit of data.

 SRAMs can operate at processor speeds of 250 MHz
 and beyond, with access and cycle times
 equal to the clock cycle used by the microprocessor

• Density.
 when 64 Mb DRAMs are rolling off the production lines,
 the largest SRAMs are expected to be only 16 Mb.

Cache Memory Technology: SRAM (con’t)

• Volatility.
 Unlike DRAMs, SRAM cells do not need to be refreshed.
 SRAMs are available 100% of the time for reading & writing.

• Cost.
 If cost is the primary factor in a memory design,
 then DRAMs win hands down.

 If, on the other hand, performance is a critical factor,
 then a well-designed SRAM is an effective cost
 performance solution.

• By taking advantage of the principle of locality:

–Present the user with as much memory as is available in
the cheapest technology.

–Provide access at the speed offered by the fastest
technology.

Memory Hierarchy of a Modern Computer System

• DRAM is slow but cheap and dense:

–Good choice for presenting the user with a BIG memory
system

• SRAM is fast but expensive and not very dense:

–Good choice for providing the user FAST access time.

Cache Terminology

A hit if the data requested by the CPU is in the upper level

A miss if the data is not found in the upper level

Hit rate or Hit ratio
is the fraction of accesses found in the upper level

Miss rate or (1 – hit rate)
is the fraction of accesses not found in the upper level

Hit time
is the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

Miss penalty
is the time required to access data in the lower level
= <lower access time>+<reload processor time>

Cache Example

Processor

Data are transferred

Time 1: Hit: in cacheTime 1: Hit: in cache

Time 1: MissTime 1: Miss

Time 3: deliver to CPUTime 3: deliver to CPU

Time 2: fetch from
lower level into cache

Time 2: fetch from
lower level into cache

Hit time = Time 1 Miss penalty = Time 2 + Time 3

Basic Cache System

Cache Memory Technology: SRAM Block diagram

Cache Memory Technology: SRAM timing diagram

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a ch e

M e m o ry

0
01

0
1

0

01
1

1
00

1
01

1
10

1
1

1

• Direct Mapped: assign the cache location based on the
 address of the word in memory

• cache_address = memory_address modulo cache_size;

Observe there is a Many-to-1 memory to cache relationship

Direct Mapped Cache: Data Structure

There is a Many-to-1 relationship between memory and cache

How do we know whether the data in the cache corresponds
to the requested word?

tags
 • contain the address information required to identify
 whether a word in the cache corresponds to the
 requested word.

 • tags need only to contain the upper portion of the
 memory address (often referred to as a page address)

valid bit
 • indicates whether an entry contains a valid address

Direct Mapped Cache: Temporal Example

lw $1,22($0)lw $1,10 110 ($0)

lw $2,26($0)lw $2,11 010 ($0)

lw $3,22($0)lw $3,10 110 ($0)

Index Valid Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Y 10 Memory[10110]

Y 11 Memory[11010]

Miss: validMiss: valid

Miss: validMiss: valid

Hit!Hit!

Direct Mapped Cache: Worst case, always miss!

lw $1,22($0)lw $1,10 110 ($0)

lw $2,30($0)lw $2,11 110 ($0)

lw $3,6($0)lw $3,00 110 ($0)

Index Valid Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Y 10 Memory[10110]Y 11 Memory[11110]

Miss: validMiss: valid

Miss: tagMiss: tag

Miss: tagMiss: tag

Y 00 Memory[00110]

(g p)

2 0 1 0

B y t e �
o f f s e t

V a l i d T a g D a t aI n d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0
TagTag IndexIndex

Direct Mapped Cache: Mips Architecture

DataData

Compare TagsCompare Tags

HitHit

Bits in a Direct Mapped Cache

How many total bits are required for a direct mapped cache
with 64KB (= 216 KiloBytes) of data
and one word (=32 bit) blocks
assuming a 32 bit byte memory address?

Cache index width = log2 words
= log2 216/4 = log2 214 words = 14 bits

Tag size = <block address width> – <cache index width>
 = 30 – 14 = 16 bits

Block address width = <byte address width> – log2 word
 = 32 – 2 = 30 bits

Cache block size = <valid size>+<tag size>+<block data size>
 = 1 bit + 16 bits + 32 bits = 49 bits

Total size = <Cache word size> ×××× <Cache block size>
 = 214 words ×××× 49 bits = 784 ×××× 210 = 784 Kbits = 98 KB
 = 98 KB/64 KB = 1.5 times overhead

Harvard architecture was
coined to describe machines
with separate memories.
Speed efficient: Increased
parallelism (split cache).

instructions data

ALU I/OALU I/O

instructions

and

data

Data busAddress bus

Von Neuman architecture
Area efficient but requires
higher bus bandwidth
because instructions and data
must compete for memory.

Split Cache: Exploiting the Harvard Architectures

Modern Systems: Pentium Pro and PowerPC

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

RAM (main memory) : von
Neuman Architecture

Cache: uses Harvard
Architecture separate
Instruction/Data caches

RAM (main memory) : von
Neuman Architecture

Cache: uses Harvard
Architecture separate
Instruction/Data caches

Cache schemes

write-through cache
 Always write the data into both the
 cache and memory and then wait for memory.

write-back cache
 Write data into the cache block and
 only write to memory when block is modified
 but complex to implement in hardware.

 No amount of buffering can help
 if writes are being generated faster
 than the memory system can accept them.

write buffer
 write data into cache and write buffer.
 If write buffer full processor must stall.

Chip Area Speed

• Read hits

–this is what we want!

Hits vs. Misses

• Read misses

–stall the CPU, fetch block from memory,
deliver to cache, and restart.

• Write hits

–write-through: can replace data in cache and memory.

–write-buffer: write data into cache and buffer.

–write-back: write the data only into the cache.

• Write misses

–read the entire block into the cache, then write the word.

Example: The DECStation 3100 cache

DECStation uses a write-through harvard architecture cache
 • 128 KB total cache size (=32K words)
 • = 64 KB instruction cache (=16K words)
 • + 64 KB data cache (=16K words)

 • 10 processor clock cycles to write to memory

The DECStation 3100 miss rates

• A split instruction and data cache increases the bandwidth

6.1%

2.1%

5.4%

Benchmark
Program

gcc

Instruction
 miss rate

Data
miss rate

Effective split
miss rate

Combined miss
rate

4.8%

spice

1.2%

1.3%

1.2%

split cache has slightly
worse miss rate

split cache has slightly
worse miss rate

Why a lower miss rate?Why a lower miss rate?

Numerical programs
tend to consist of a lot
of small program loops

Numerical programs
tend to consist of a lot
of small program loops

1.2% miss, also means
that 98.2% of the time it
is in the cache. So
using a cache pays off!

1.2% miss, also means
that 98.2% of the time it
is in the cache. So
using a cache pays off!

Review: Principle of Locality

• Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

• Two types of locality

• Temporal locality (locality in time)
 If an item is referenced, then

the same item will tend to be referenced soon
 “the tendency to reuse recently accessed data items”

• Spatial locality (locality in space)
 If an item is referenced, then

nearby items will be referenced soon
 “the tendency to reference nearby data items”

Spatial Locality

• Temporal only cache
 cache block contains only one word (No spatial locality).

• Spatial locality
 Cache block contains multiple words.

• When a miss occurs, then fetch multiple words.

• Advantage
Hit ratio increases because there is a high
probability that the adjacent words will be

 needed shortly.

• Disadvantage
Miss penalty increases with block size

Spatial Locality: 64 KB cache, 4 words

• 64KB cache using four-word (16-byte word)
• 16 bit tag, 12 bit index, 2 bit block offset, 2 bit byte offset.

Address (showing bit positions)

16 12 Byte�
offset

V Tag Data

Hit Data

16 32

4K�
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 3 2 1 0

• Use split caches because there is more spatial locality in
code:

Performance

6.1%

2.1%

5.4%

Program
Block size

gcc
=1

Instruction
 miss rate

Data
miss rate

Effective split
miss rate

Combined miss
rate

4.8%

gcc
=4

2.0%

1.7%

1.9%

4.8%

spice
=1

1.2%

1.3%

1.2%

spice
=4

0.3%

0.6%

0.4%

Temporal only split cache:
has slightly worse miss rate

Temporal only split cache:
has slightly worse miss rate

Spatial split cache: has
lower miss rate

Spatial split cache: has
lower miss rate

• Increasing the block size tends to decrease miss rate:

Cache Block size Performance

1 K B �

8 K B �

1 6 K B �

6 4 K B �

2 5 6 K B

2 5 6

4 0 %

3 5 %

3 0 %

2 5 %

2 0 %

1 5 %

1 0 %

5 %

0 %

M
is

s
ra

te

6 41 64

B lo c k s iz e (b y te s)

