
November 1997PERSONAL ENGINEERING 53

KISS those asynchronous-logic problems
good-bye

Steven K Knapp is the founder and
president of OptiMagic Inc (Aptos, CA,
www.optimagic.com), a firm that devel-
ops intellectual property and design soft-
ware for programmable logic. Prior to
founding this firm he held various applica-
tions, engineering and management posi-
tions at Xilinx and Intel’s former program-
mable-logic division.

EXPERT COLUMN EDA

(a)

(b)

Fig 1—Gated clocks often have glitches due to differences in signal arrival
times (a). Changing to a synchronous solution guarantees success(b).

Steve Knapp

Many organizations promote an ef-
fective philosophy dubbed KISS (for
Keep It Simple, Stupid) to improve
the success rate of complex opera-
tions. A variation of this theme pro-
motes success in digital design: Keep
It Strictly Synchronous.

The popularity and flexibility of
array-based logic—whether a field-
programmable gate array (FPGA), a
complex programmable-logic device
(CPLD) or a gate array—might tempt
unwary designers into developing
bad asynchronous habits. Because
these devices all use programmable
interconnect, different signal arrival
times coupled with asynchronous
logic invite a digital disaster.

Synchronous designs are inher-
ently safer and easier to debug than
asynchronous designs. Engineers can
simply predict the behavior of syn-
chronous systems and model them in
simulation. The analysis comes down
to the worst-case path between clock

edges—a simple process, especially
using a static timing analyzer. Asyn-
chronous design involves analyzing
all combinations of best- and worst-
case signal paths over temperature,
voltage and process—a far more oner-
ous chore.

Consequently, synchronous de-
signs work with a much wider varia-
tion in device timing parameters and
over a broader temperature range
than do most asynchronous designs.
As process technology improves, cir-
cuit delays decrease. A vendor might
ship faster devices that meet all
datasheet specifications but behave
differently than the old part. Prob-

lems with asynchronous logic usu-
ally don’t appear until you’ve built a
board. One batch of parts works fine,
another batch fails the system test,
while another batch seemingly fails
intermittently in the field depending
on operating conditions.

The scourge of gated clocks

One problem most vulnerable to
process changes and common in pro-
grammable-logic and gate-array de-
signs is the gated clock. The Japanese
phrase zen zen dame, which loosely
translated means “never, never do”
applies in this situation. Glitches on a

November 199754 PERSONAL ENGINEERING

Fig 2—Some FPGAs have flip-flops
with built-in clock enables, some
don’t. Building an equivalent
solution is simple as implemented in
schematic (a), VHDL (b) and
Verilog (c).

gated clock often result from differ-
ences in arrival times for its input
signals caused by routing delays in-
side a device (Fig 1). Further, gated
clocks introduce additional delay in
the clock path, which pushes out
clock-to-output times and might in-
troduce hold-time problems.

At first blush, you might think that
you never use gated clocks. But all of
the following situations involve a
glitch-prone path through some com-
binatorial logic. For each circuit, there
is an alternative, fully-synchronous
implementation, usually involving a
flip-flop with a Clock Enable input.

In general, the clock for an internal
flip-flop should only originate from
either a device input or from another
flip-flop. Consider these common
situations:
• Clocks derived from the terminal
count (TC) of a counter. Most cir-
cuits generate TC signals with an AND
gate. This situation is common in ap-
plications where a high-speed clock
is divided down and redistributed
within a device.
• Clocks derived from a decoder.
Many designs commonly use this
logic to load various banks of flip-
flops.
• Clocks derived from a multiplexer
output. This situation is common in
applications that select various clock
frequencies.

The example in Fig 1a, presents a
case where a gated input drives the
Clock input of the second counter—a
bad situation. The difference in rout-
ing delays causes glitches on the AND
gate during specific states on
Counter_A. These glitches cause in-
correct clocking for Counter_B. A bet-
ter implementation appears in Fig 1b,
where both counters operate from the
same clock source. The terminal count
from Counter_A drives a Clock En-
able signal on Counter_B. The clock
path is clean and unfettered with
asynchronous gates.

The solution in this example, and
many others, includes a flip-flop with
a Clock Enable input. In some FPGA
devices, such as those from Xilinx and
Lucent, the internal flip-flops have a
built-in Clock Enable input. In other
devices, you can easily build a clock
input by including a 2:1 multiplexer
in front of the data input (Fig 2). If
designing circuits with VHDL or
Verilog, note that not all synthesis
packages automatically create a
flip-flop using the built-in enable,

even if one is available in the target
technology.

A designer using CPLDs might
wonder about the wisdom in using a
product-term clock, which essentially
is a gated clock. However, internal
delays on a CPLD product term are
more closely matched than routing
delays inside an FPGA or gate array.
However, you can still run into gated-
clock problems on a product-term
clock. Watch the inputs and their ar-
rival times and be wary of potential
glitches.

Global buffers aid clocking

Another clocking aid is a global
clock buffer, a high-speed, low-skew,
high-fanout clock-distribution net-
work built into most CPLDs and
FPGAs. These devices come with two
or more global clock buffers, and
some have as many as eight. If a de-
sign doesn’t use them, these valuable
resources are wasted. Ideally, a de-
sign should have one or two clock
inputs. These clocks, typically with
high fanout, should use the global
clock buffers to simplify overall de-
vice design.

With most vendors’ tools, you
must specifically request a global
buffer either using a special symbol
in the schematic or by instantiating
the buffer through VHDL or Verilog,
but some tools automatically infer the
use of a global buffer.

A downside of global clock
buffers is that they’re among the
largest power consumers in an
FPGA or CPLD at somewhere be-
tween 2-10 mW/MHz. For most de-
signs, this level is second only to I/O
switching in overall power consump-
tion. However, the benefit of a clock
buffer typically outweighs the extra
power consumption and engineering

EDA
EXPERT COLUMN

November 1997PERSONAL ENGINEERING 5555

Fig 3—A common circuit
demonstrates unreliable operation.
The output from the decoder
depends upon and also resets the
counter flip-flops. The asynchronous
reset signal might be too fast to
reliably reset all of the counter flip-
flops.

required to design without them.
Luckily, in most devices you can con-
nect as many flip-flops as desired to
a buffer without consuming addi-
tional power. If a design requires the
absolute minimum power and you
decide not to use any global clock
buffers, always be wary of clock-skew
problems where the clock signal
might arrive at one flip-flop before
the others.

Many synchronous flip-flops, even
with global clocks, use asynchronous
Set and Reset inputs. Keep a watch-
ful eye on these inputs. With modern
fast devices, even a momentary glitch
is enough to inadvertently change a
flop’s state. Fig 3 shows a common
circuit that decodes the output of a
counter, and the decoded output
asynchronously resets the counter.
The problem is that a decoded out-
put might be too short to reliably re-
set all the flip-flops in the counter. A
better approach is to use a counter
with a synchronous reset.

As mentioned for clock inputs,
asynchronous flip-flop inputs should
originate from either device inputs
or from other flip-flop outputs.

A few guidelines

A few simple guidelines define the
Keep It Strictly Synchronous ap-
proach:
• Use as few clocks as possible. The
ideal synchronous system has a single
clock input.
• Avoid gated signals on any asyn-
chronous flip-flop input including
Clock inputs as well as asynchronous
Set or Reset inputs.
• If available, use global clock buff-
ers to distribute any high-fanout or
skew-critical clock signals. If you’re
not using global buffers, always
evaluate each separate clock path for

clock-skew problems.
• If you find an asynchronous cir-
cuit, ask if it’s possible to redesign
the logic using a synchronous alter-
native.
• If you absolutely require an asyn-
chronous circuit, always perform a
thorough worst-case analysis. What
happens if one of the signals arrives
early and the other late? How about
vice versa? Watch for glitches. PE&IN

Editorial Feedback
This article’s value to me was:

High—266 Average—267 Low—268

EDA
EXPERT COLUMN

This space left intentionally blank.

