
CWRU EECS 317

EECS 317
 Computer Design

EECS 317
 Computer Design

LECTURE 7:
VHDL Standard Cell

Library Package

LECTURE 7:
VHDL Standard Cell

Library Package

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University

CWRU EECS 317

Standard Cell Library

• Standard Cell simulation libraries: describe components
functionally as well as with timing information.

• Software programmers are primarily concerned with
functionality (i.e. given the data inputs (mouse, keyboard,
etc.) does it give the expected output results?)

• Software programmers sometimes spend additional time to
make the program work relativity faster than before.

(i.e. time complexity O(n) versus O(n2))

• Hardware designers deal with real-time issues all the time.

• Functional hardware specifications include timing
requirements. This translate to an output signal must arrive
within a certain time period)

CWRU EECS 317

Standard Cell Library

• Standard Cell libraries

• Standard cell libraries do not contain every possible
logic gate. For example, AND gates may not be included.

• CMOS process technology favors NAND and NOR gates
over AND and OR gates in number of transistors.

• High level Synthesis tools will build the AND gate from a
NAND and an INVERTOR gate.

• By using VHDL, the design becomes portable between
cell libraries.

CWRU EECS 317

Standard Cell Library

• Standard Cell library

• Assume the library contains the following 6 components

• nandf201: 2 input nand with 1x output drive

• norf201: 2 input nor with 1x output drive

• invf101: 1 input not gate with 1x output drive

• xorf201: 2 input xor gate with 1x output drive

• xnof201: 2 input xnor gate with 1x output drive

• dfbf311: D-Flip Flop with D, Reset, Set, Q, QN, Clk

• Next we want to create a package library to reference it.

CWRU EECS 317

Standard Cell: 2 input NAND output drive 1X

ENTITY nandf201 IS
 GENERIC(Tdelay: TIME:=10 ns);
 PORT(A1, B1: IN std_logic;

F1: OUT std_logic
);

END ;

ENTITY nandf201 IS
 GENERIC(Tdelay: TIME:=10 ns);
 PORT(A1, B1: IN std_logic;

F1: OUT std_logic
);

END ;

CONFIGURATION nandf201_cfg OF nandf201 IS
 FOR nandf201_arch
 END FOR;
END;

CONFIGURATION nandf201_cfg OF nandf201 IS
 FOR nandf201_arch
 END FOR;
END;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_VECTOR;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_VECTOR;

ARCHITECTURE nandf201_arch OF nandf201 IS
BEGIN

F1 <= (A1 NAND B1) after Tdelay;
END;

ARCHITECTURE nandf201_arch OF nandf201 IS
BEGIN

F1 <= (A1 NAND B1) after Tdelay;
END;

CWRU EECS 317

Standard Cell Package

PACKAGE STDLIB1 IS

 COMPONENT nandf201 IS
 GENERIC(Tdelay: TIME:=5 ns);
 PORT(A1, B1: IN std_logic; F1: OUT std_logic);
 END COMPONENT;

 COMPONENT norf201 IS
 GENERIC(Tdelay: TIME:=5 ns);
 PORT(A1, B1: IN std_logic; F1: OUT std_logic);
 END COMPONENT;

 . . .

END;

PACKAGE BODY STDLIB1 IS

END;

PACKAGE STDLIB1 IS

 COMPONENT nandf201 IS
 GENERIC(Tdelay: TIME:=5 ns);
 PORT(A1, B1: IN std_logic; F1: OUT std_logic);
 END COMPONENT;

 COMPONENT norf201 IS
 GENERIC(Tdelay: TIME:=5 ns);
 PORT(A1, B1: IN std_logic; F1: OUT std_logic);
 END COMPONENT;

 . . .

END;

PACKAGE BODY STDLIB1 IS

END;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_VECTOR.ALL;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_VECTOR.ALL;

CWRU EECS 317

Full Adder: Architecture

ENTITY full_adder IS
 PORT(x, y, z: IN std_logic;
 Sum, Carry: OUT std_logic);
END;

ENTITY full_adder IS
 PORT(x, y, z: IN std_logic;
 Sum, Carry: OUT std_logic);
END;

ARCHITECTURE full_adder_arch_1 OF full_adder IS
 SIGNAL xy: std_logic;
BEGIN
 -- Note: “Sum <= ((x XOR y) XOR z);”
 xor1: xor201 port map(x, y, xy);
 xor2: xor201 port map(xy, z, Sum);
 …
END;

ARCHITECTURE full_adder_arch_1 OF full_adder IS
 SIGNAL xy: std_logic;
BEGIN
 -- Note: “Sum <= ((x XOR y) XOR z);”
 xor1: xor201 port map(x, y, xy);
 xor2: xor201 port map(xy, z, Sum);
 …
END;

LIBRARY IEEE; USE IEEE.STD_LOGIC_VECTOR.ALL;
LIBARRY WORK; USE WORK.STDLIB1.ALL;

LIBRARY IEEE; USE IEEE.STD_LOGIC_VECTOR.ALL;
LIBARRY WORK; USE WORK.STDLIB1.ALL;

CWRU EECS 317

Nandf201: traditional testbench

LIBRARY IEEE;
USE IEEE.std_logic_vector.all;

LIBRARY WORK;
USE WORK.stdlib1.all;

ENTITY nandf201_testbench IS
END ;

ARCHITECTURE nandf201_testbench_arch OF nandf201_testbench
 SIGNAL A, B, F: std_logic;
IS
BEGIN

tb1: nandf201 port map(F, A, B);

 -- reminder: absolute time for wave statement

A <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns, ‘1’ after 30 ns;

B <= ‘0’, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘1’ after 30 ns;
END;

LIBRARY IEEE;
USE IEEE.std_logic_vector.all;

LIBRARY WORK;
USE WORK.stdlib1.all;

ENTITY nandf201_testbench IS
END ;

ARCHITECTURE nandf201_testbench_arch OF nandf201_testbench
 SIGNAL A, B, F: std_logic;
IS
BEGIN

tb1: nandf201 port map(F, A, B);

 -- reminder: absolute time for wave statement

A <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns, ‘1’ after 30 ns;

B <= ‘0’, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘1’ after 30 ns;
END;

CWRU EECS 317

Nandf201: text io test bench

USE STD.textio.all; --write/read strings

LIBRARY IEEE;
USE IEEE.std_logic_vector.all;
USE IEEE.std_logic_textio.all; --write/read std_logic

LIBRARY WORK;
USE WORK.stdlib1.all; --component libs

ENTITY nandf201_testbench IS
END ;

USE STD.textio.all; --write/read strings

LIBRARY IEEE;
USE IEEE.std_logic_vector.all;
USE IEEE.std_logic_textio.all; --write/read std_logic

LIBRARY WORK;
USE WORK.stdlib1.all; --component libs

ENTITY nandf201_testbench IS
END ;

CWRU EECS 317

Nandf201: text io test bench

ARCHITECTURE nandf201_testbench_arch OF nandf201_testbench IS
 SIGNAL A, B, F: std_logic;
BEGIN

tb1: nandf201 port map(F, A, B);

 -- reminder: absolute time for wave statement
A <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns, ‘1’ after 30 ns;
B <= ‘0’, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘1’ after 30 ns;

PROCESS(A, B, F) --listen to any change in signal

variable buf: line; --pointer to a string
BEGIN

write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);

 END PROCESS;
END;

ARCHITECTURE nandf201_testbench_arch OF nandf201_testbench IS
 SIGNAL A, B, F: std_logic;
BEGIN

tb1: nandf201 port map(F, A, B);

 -- reminder: absolute time for wave statement
A <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns, ‘1’ after 30 ns;
B <= ‘0’, ‘0’ after 10 ns, ‘1’ after 20 ns, ‘1’ after 30 ns;

PROCESS(A, B, F) --listen to any change in signal

variable buf: line; --pointer to a string
BEGIN

write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);

 END PROCESS;
END;

CWRU EECS 317

Nandf201: sample output text io test bench

• PROCESS(A, B, F) means that every time there is a
change in signals A, B, of F: this process will be called

• This is called a sensitivity list because is listening in on all
signals declared in the list

• PROCESS(A, B, F) means that every time there is a
change in signals A, B, of F: this process will be called

• This is called a sensitivity list because is listening in on all
signals declared in the list

vhdlan -NOEVENT stdlib1.vhd
vhdlan -NOEVENT nandf201_testbench.vhd
vhdlsim nandf201_testbench_cfg

#run
Time=0 NS F=U A=U B=U

 Time=0 NS F=U A=0 B=0
Time=10 NS F=1 A=1 B=0
Time=20 NS F=1 A=0 B=1
Time=30 NS F=1 A=1 B=1
Time=40 NS F=0 A=1 B=1

vhdlan -NOEVENT stdlib1.vhd
vhdlan -NOEVENT nandf201_testbench.vhd
vhdlsim nandf201_testbench_cfg

#run
Time=0 NS F=U A=U B=U

 Time=0 NS F=U A=0 B=0
Time=10 NS F=1 A=1 B=0
Time=20 NS F=1 A=0 B=1
Time=30 NS F=1 A=1 B=1
Time=40 NS F=0 A=1 B=1

CWRU EECS 317

Nandf201: process wave function
The absolute time wave function:

A <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns;
B <= ‘0’, ‘0’ after 10 ns, ‘1’ after 20 ns;

Can be re-written using relative time:
PROCESS

VARIABLE buf: LINE;
BEGIN

A <= ‘0’; B<=‘0’;
write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);
wait for 10 ns;

A <= ‘1’; B<=‘0’; --followed by more write statements
wait for 10 ns;

A <= ‘0’; B<=‘1’; --followed by more write statements
wait for 10 ns;

 END PROCESS;

The absolute time wave function:
A <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns;
B <= ‘0’, ‘0’ after 10 ns, ‘1’ after 20 ns;

Can be re-written using relative time:
PROCESS

VARIABLE buf: LINE;
BEGIN

A <= ‘0’; B<=‘0’;
write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);
wait for 10 ns;

A <= ‘1’; B<=‘0’; --followed by more write statements
wait for 10 ns;

A <= ‘0’; B<=‘1’; --followed by more write statements
wait for 10 ns;

 END PROCESS;

CWRU EECS 317

Nandf201: VARIABLE test bench time

PROCESS
VARIABLE Ttest: TIME:=10 ns;
VARIABLE buf: LINE;

BEGIN
A <= ‘0’; B<=‘0’;
write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);
wait for Ttest;

A <= ‘1’; B<=‘0’; --followed by more write statements
wait for Ttest;

A <= ‘0’; B<=‘1’; --followed by more write statements
wait for Ttest;

 END PROCESS;

PROCESS
VARIABLE Ttest: TIME:=10 ns;
VARIABLE buf: LINE;

BEGIN
A <= ‘0’; B<=‘0’;
write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);
wait for Ttest;

A <= ‘1’; B<=‘0’; --followed by more write statements
wait for Ttest;

A <= ‘0’; B<=‘1’; --followed by more write statements
wait for Ttest;

 END PROCESS;

CWRU EECS 317

Nandf201: testbench which compares result
ARCHITECTURE nandf201_testbench_arch OF nandf201_testbench IS
 SIGNAL A, B, F: std_logic;
BEGIN

tb1: nandf201 port map(F, A, B);

PROCESS
BEGIN

A <= ‘0’; B<=‘0’;
write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);
wait for 10 ns;

if F/=‘0’ then --not equal to
write(buf, string’(“test #1 failed”));
writeline(output, buf);

end if;
...
wait; --always add a final wait for test benches--

END PROCESS;

ARCHITECTURE nandf201_testbench_arch OF nandf201_testbench IS
 SIGNAL A, B, F: std_logic;
BEGIN

tb1: nandf201 port map(F, A, B);

PROCESS
BEGIN

A <= ‘0’; B<=‘0’;
write(buf, string’(“Time= “)); write(buf, NOW);
write(buf, string’(“ A=“)); write(buf, A);
write(buf, string’(“ B=“)); write(buf, B);
writeline(output, buf);
wait for 10 ns;

if F/=‘0’ then --not equal to
write(buf, string’(“test #1 failed”));
writeline(output, buf);

end if;
...
wait; --always add a final wait for test benches--

END PROCESS;

CWRU EECS 317

Assignment #7

a) Write a package containing all of the six stdlib1 gates
described earlier and rewrite your 1-bit ALU using only these
components. The stdlib1 package should also contain 1-bit
ALU and the generic N-bit ALU.

b) Write a test bench for the N-bit ALU (i.e. N=8) that uses
your package and checks your output values with if/then
statements. Do forget to construct the worst case test
vectors for 8-bit adds.

c) Using a Tdelay for each gate of 10 ns, determine the
minimum delay of your adder by varying the test bench time
until it passes all the tests constructed.

d) Hand in the source files and vhdlsim session using the
Unix script command.

