
682 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-19, NO, 5, OCTOBER 1984

A 32-Bit NMOS Microprocessor with a
Large Register File

ROBERT W. SHERBURNE, JR., MANOLIS G. H. KATEVENIS, MEMBER, IEEE,

DAVID A. PATTERSON, AND CARLO H. SEQUIN, FELLOW, IEEE

Afmfract —Two scaled versions of a 32-bh NMOS reduced instruction

set computer CPU, called RISC II, have been implemented on two

different processing lines using the simple Mead and Conway layout rules

with lambda values of 2 and 1.5 pm (corresponding to drawn gate lengths

of 4 and 3 y m), respectively. The design utilizes a small set of simple

instructions in conjunction with a large register file in order to provide high

performance. This approach has resulted in two surprisingly powerful

single-chip processors.

I. INTRODUCTION

E VER more powerful and more complex processors are

being integrated onto a single silicon chip. As chip

functionality increases, the rising complexity confronting

the designer becomes a serious concern. Tens of man-years

are typically required to complete a 32-bit microprocessor

design from the architectural specifications down to the

circuit and layout levels. If the elapsed design time stretches

over more than a few years, the fabrication technology will

have changed so much that the original assumptions made

regarding chip constraints no longer apply.

To minimize actual elapsed design time, chips are parti-

tioned into modules, which are constructed in parallel by

several design teams. Each module is optimized within the

constraints assigned by a project leader or manager. This

divide-and-conquer technique, the traditional approach in

industry, has the disadvantage that no design team is

familiar with the chip as a whole. This makes global or

intermodule optimization difficult, if not impossible.

The overall organization of the system and the choice of

a particular microarchitecture set general performance

limits, and the shortcomings of poor decisions at the archi-

tectural level can be only partially compensated by

sophisticated circuit design and layout optimization. The

consequences of design decisions should thus be evaluated

across multiple levels of the specification/implementation

hierarchy. The difficulty of this process increases very

quickly with increasing complexity of a system.

In view of constantly changing chip technology and

constraints, design decisions must be reevaluated with each

Manuscript received March 12, 1984: rewsed May 9, 1984. This work
was supported by the Defense Advanced Research Projects Agency, U S.
Department of Defense, under ARPA Order 3803, momtored by the
Naval Electronic Systems Command under Contract NOO039-81-K-0251

The authors are with the Computer Science Division, Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94720.

new computer. The switch in implementation technology

from boards filled with SS1 and MSI parts to a single MOS

VLSI chip has a strong impact on the design tradeoffs.

Most importantly, a single-chip CPU is governed by much

more stringent constraints than a mainframe CPU: there

are hard limits on the number of transistors, chip area,

total power dissipation, and interconnection pins at the

chip periphery. These limited resources must be balanced

very carefully between the various functional modules in

the CPU because additional hardware assistance given to

one function will typically slow down other functions.

VLSI processor design must start with a critical analysis

of the importance of different functions for the selected

application area and their relative cost of implementation.

Specifically, one must start with an evaluation of the

contribution of each proposed instruction to the overall

performance of the computer system when executing an

anticipated mix of computational tasks.

II. REDUCED INSTRUCTION SET

An analysis of the microcode of a minicomputer with

some 300 instructions (DEC VAX-11/780) and of the

dynamic instruction count in a typical job mix shows that

20 percent of the instructions, accounting for about 60

percent of all microcode, are used less than 1 percent of the

time [1]. Replacement of these instructions by software

routines does not significantly degrade performance. When

a single-chip CPU implementation is considered, the result-

ing reduction in the size of the microcode has considerable

benefits. Less complicated circuitry means shorter delays

and a potentially faster machine cycle which benefits all

instructions. Furthermore, a reduction in the area and the
number of transistors in the control section frees up chip

resources for the support of other functions. Last but not

least, reducing the complexity and internal state of the

machine simplifies the design and testing tasks, resulting in

an earlier market entry.

Recently, several NMOS, single-chip VLSI micro-

processors have been designed with this idea in mind. The

RISC I [2], RISC II [3], and MIPS [4] architectures employ

low-level instructions, each executing in one machine cycle.

This regular execution timing simplifies the implementa-

tion of pipelining and retains conceptual simplicity. The

0018 -9200/84/1000-0682$01 .00 01984 IEEE

683SHERRURNE et d.: 32.-BIT NMOS MICROPROCESSOR

DATA IN OPCODE
~~-lMM—DEcv

J
I r# I

DECODER cc~l!(

REGISTER IFILh’
) ‘ : A ‘ - - “

s]I ~

Fig. 1. Allocation ofchiparea resources mRISC II

resulting chips look quite different from commercial

single-chip microprocessors, which often dedicate up to

half their diearea tothe control for the-datapath. In the

reduced instruction set computer (RISC) less instruction

decoding and control logic is necessary, making possible

the use of small, fast, programmed logic arrays (PLA’s).

The delays through the instruction decoder are reduced so

that they are no longer in the critical path that limits

processor performance. The area freed up by the reduced

control circuitry is used for an expanded register file (Fig.

1) to provide fast access to operands.

The addition of a large local memory is not the only way

the freed-up chip area can be used. For different applica-

tion domains, other functions may play an even more

important role in enhancing overall systems performance.

For example, in a RISC implementation of a Smalltalk

processor [5] extra tag checking logic is included on the

chip to improve the performance of variable length integer

arithmetic and of garbage collection.

The instruction set of RISC II is presented in Table I.

Arithmetic operations are limited to simple add and sub-

tract instructions. Logical operations and arbitrary left and

right shifts are also provided. Multiplication, division, and

floating point operations are performed by subroutines or

with the use of an off-chip coprocessor, depending on the

needs of the system. Data loads and stores support byte,

half-word, and full-length 32-bit formats. Also included are

conditional jumps, calls, and returns, as well as a few

miscellaneous instructions dealing with interrupts or with

the composition of a full-length 32-bit address in a register.

In all, there are only about 30 instructions in RISC II, in

stark contrast to other machines with more than ten times

as many instructions.

Inst&ction execution follows a 3-address, register-to-reg-

ister format. In each machine cycle two operands are

fetched in parallel, are operated upon by the arithmetic/

logic unit (ALU) or by the shifter, and the result is written

back to the register file in a pipelined manner during the

next instruction execution. As a result of the small set of

simple instructions and their regular execution pattern, the

control logic is almost invisible. The instruction decoder is

shown in the upper right comer of Fig. 2. It consists of a
generalized NOR decoder with only 8 inputs, calculating 36

different product terms. A few of these product terms are

replicated as necessary in order to provide the desired

ordering of output terms to the datapath modules. The

second level of NOR gates, in which product terms are

summed, is very small: an average of 1.5 minterms per

product term are utilized for the 30 different decoder

outputs. This approach thus yields a very compact and fast

instruction decoder. The other fields in the instruction

format, the source and destination addresses, are decocled

in separate small circuit modules close to the area on chip

where the generated signals are actually used.

III. INCREASED LOCAL MEMORY

A fundamental limit of computer performance is

reached when memory traffic equals the availaltde

input/output (1/0) bandwidth of the processor chip. The

1/0 bandwidth limit for a given technology is set by area

and power constraints. Only a limited number of 1/0 pads

with their associated driver circuits can be accommodated

on a single chip. The speed of 1/0 drivers is bounded b:y a

delay–power product, since the off-chip loading is prim-

arily capacitive. Multiplexing the pads for several 1,/0

transactions per cycle, requires a faster settling time and

hence greater power dissipation.

Memory traffic consists of two classes of information:

instructions and data. Several options are available for

reducing either component. At the architectural level, the

set of machine instructions may be designed to include

powerful constructs equivalent to many simple instruc-

tions. This has been done traditionally for large mainframe

computers to increase the effective bandwidth at whl~ch

instructions can be delivered to the CPU. RISC implemen-

tations, on the other hand, choose a less stron#y encodled

instruction format which leads to a simple and small

control section. Instead, they make a special effort to

minimize data memory traffic. Much of the chip area is

devoted to a large register file that can store many of the

frequently used operands on chip, thereby reducing data

traffic through the chip periphery.

A register-based machine can store frequently used oper-

ands in a fast, multiple-port register file. Register alloc-

ation is performed by the compiler. It is performed inde-

pendently for each subroutine; thus register contents may

have to be swapped off-chip in order to make room for the

next procedure [Fig. 3(a)]. For many machines, this makes

the subroutine call and return a very time-consuming oper-

ation resulting in a significant performance degradation

when executing typical high-level language programs.

In order to reduce this overhead associated with proce-

dure calls, the RISC II microprocess provides a lot of local

memory, organized in multiple, overlapping register banks,

also called windows. Each bank supports a different level of

the dynamic procedure calling hierarchy [Fig. 3(b)]. The

active procedure has access to a total of 32 registers. Ten of

these registers are local to the present procedure level.

There are also six high and six low registers which are

shared by adjacent procedure levels; they are used prim-

arily for passing parameters and results between proce-

dures without the need for explicit data movements. In

addition, ten global registers are accessible from any proce-

dure level. Operands or parameters that do not fit into this

fixed register framework are stored in main memory. The

overlapping banks are implemented as a contiguous block

684 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-19, NO. 5, OCTOBER 1984

TABLE I

INSTRUCTION SET OF RISC II

Instruction Operands Comments

add Rd,Rs,S2 Rde Rs+S2 integer add

addc Rd,Rs,S2 Rd-Rs+S2+ carry add with carry

sub Rd,Rs,S2 Rd-Rs-S2 integer subtract

suhc Rd,Rs,S2 Rd - Rs - S2 - borrow subtract with borrow

suhi Rd,Rs,S2 Rde S2-Rs integer subtract

subci Rd,Rs,S2 Rd - S2 - Rs - borrow subtract with borrow

and Rd,Rs,S2 Rd--Rs&S2 bitwke logical AND

or Rd,Rs,S2 Rdo-Rsl S2 bitwise logical OR

xor Rd,Rs,S2 Rd - Rs xor S2 bitwise Iogicat EXCLUSIVE OR

Sll Rd,Rs,S2 Rd * Rs shifted by S2 shift left

srl Rd,Rs,S2 Rd + R. shifted by S2 shift right logical

sra Rd,Rs,S2 Rd + Rs nbifted by S2 shift right arithmetic

ldw Rd,(Rx)S2 Rd-hl[Rx+ S2] load word

Idbu Rd,(Rx)S2 Rd-M[Rx+ S2] (align, zer~fill) load half unsigned

ldhs Rd,(Rx)S2 Rd-M[Rx + S2] (atign, sign-ext) load half signed

ldbu Rd,(Rx)S2 Rd-M[Rx+ S2] (aIii, xero-fill) load byte unsigned

ldbs Rd,(Rx)S2 Rd+M[Rx+ S2] (align, siga-ext) load byte signed

Stw Rm,(Rx)S2 M[Rx+ S2]_Rm store word

sth Rm,(Rx)S2 M[Rx+ S2]tRm (atign) store half

stb Rm,(Rx)S2 M[Rx+ S2]-Rm (align) store byti

impx COND,(RX)S2 if COND then PC-Rx+ S2 cond. jump, indexed, delayed

jmpr COND,Y if COND then PC* PC+ Y cond. jump, PC-reL, delayed

callr Rd,(Rx)S2 Rd-PC; PC* RX+ S2 CWP-- cfdl indexed, change window

callr Rd,Y Rd-PC; PC-PC+ Y CWP-- call PC-reL, change window

ret (Rx)S2 PC-Rx+ S2; CWP+ + return, change window

Idhi Rd,Y Rd<31:13>-~ Rd<12:O>-O load immediate high

~tlpc Rd Rd-l=tPC to restart pipeline after interrupts

getpsw Rd Rd-PSW read status word

putpsw Rm PSW-Rm set status word

reti (Rx)S2 PC~Rx+ S2; CWP+ + ; en. intern. return from iatcrmpt

calli hardwired, on interruptfi CWT.-; R25-lastPC PC-Intr,Vect.; disable intr.

Rd, Rs, Rx, Rm: a register (one of 32, where RO=O); S2: either a register or a 13-bit immediate constant

COND: 4-bit condition; Y: 19-bit immediate constzm\ PC: Program-Countc~ CWP: Current-Whdow-Pointeq

Ml instructions can optionally set the Condition-Codes.

Fig. 2. Control logic area (instruction decoder in upper right).

of 138 registers in which at any one time a group of 22

registers is singled out by a window pointer; the latter

moves in steps of 16 register positions for each procedure

call or return. 128 of the registers are used in this manner

to implement a circular buffer of 8 register banks. When

the procedure nesting depth exceeds the size of this buffer,

an overflow occurs and one or two register banks [6] are

(:i)TypicAL CPU

ECALL RETURN

[t))Rlsc~Cpu

I MEMORY I I
MEMORY

I
I I I I

Fig. 3. Procedure call and return in register-based machines.

swapped back to main memory to free up new register

space for the called procedure. These registers are restored

from main memory when an underflow occurs.

Since this multiple-bank local memory may occupy a

significant portion of the chip area, it is important to

ensure that it makes effective use of available resources,

and the optimal size and number of these windows should

srrs3-uRrw et al.: 32-BITmdos M1cROPROcEssOR 685

TABLE II

NORMALIZEDRISC H EXECUTIONTrME
I I I

I WrNDows I 1 2 ~ 5 79CQ
IL 4

Normahzed RISC 11

Register Cycle Time 1.00 1.22 141 1.73 200 2.24 m

TOWER (architecture) 7.08 302 2.52 13s 1,10 1,02 1.00
19’% Dynamic

Call&Return (system) 7.08 3.68 3.55 2,39 2.20 2.28 m

PUZZLE (architecture) 1.17 1.02 lLm lW 1.00 1.00 1.00
07% Dynamic
Calt&Return (system) 1.17 1.24 141 173 200 2.24 m

(Architecture; Based on machme cycle time.)

(System: Scaled with register file cycle time.)

be determined carefully. Architectural simulations [7] indi-

cate that over/underflows occur in only a few percent of

all procedure calls if the register file contains eight windows,

and that most scalars can be accommodated in local mem-

ory with the specific numbers of registers per window

mentioned above. But concentrating on architectural simu-

lations alone overlooks the fact that too large a register file

also leads to performance penalties. The increased parasitic

capacitances of longer buses in a larger register file stretch

out the basic machine cycle. A proper analysis of the

tradeoffs must encompass architectural as well as circuit

design issues [8].

Some results of such a study are presented below. Table

II gives the relative execution times of two C programs.

Tower of Hanoi and Puzzle, versus the number of windows

on the chip. Both benchmarks nest to a depth of twenty,

but Tower has a very high ;ate of procedure calls and

returns (19 percent) and thus makes intensive use of the

multiple register banks. Performance improves noticeably

up to the use of about seven windows. In Puzzle, on the

other hand, only 0.7 percent of all instructions executed are

calls and returns; the program performs adequately with

only one or two windows. The first entry in each field

(architecture) is solely based on architectural studies of

procedure behavior [7] and register file management over-

head for RISC [6]. The second set of numbers (system) also

takes into account the lengthening of the machine cycle

with increasing size of the register file [8]. They clearly

show a point of diminishing return in the number of

register windows. When considering more sophisticated

schemes that reduce the swapping overhead by saving and

restoring only the registers actually used by a procedure,

the optimum number of windows shifts to even lower

values. These studies show that seven windows (plus one to

handle interrupts) are a practical upper bound for the size

of the register file— even for very procedure call intensive

programs.

IV. PIPELINING AND DATAPATH TIMING

In a single-chip design, datapath speed is a critical factor

in system performance. Careful selection and orchestration

of the resources in the datapath w-e thus the prime task of

FROM MEMORY

Fig. 4,

the microarchitect. Standard ways of improving perform-

ance include the use of pipelining in the datapath (requir-

ing more buses) or enhancing the computational power of

its modules (requiring more circuitry). Because chip area~is

limited, only a few of the many possible techniques jfor

improving performance can be implemented simulta-

neously. Careful analysis is necessary to ensure that overall

system throughput, not just the speed of a few instructicms

is maximized.

The RISC II datapath is illustrated in Fig. 4. Two 32-bit

buses carry the data from the dual-port register file to the

ALU. These buses also carry the result of the ALU and its

complement back to the register file. An additional bus is

incorporated into the shifter, which facilitates alignment of

load and immediate data. A separate bus is also used in

order to interface with off-chip data and instruction memo-

ries.

Each instruction stretches over three machine cycles as

shown in Fig. 5. The first cycle consists of the instruction

fetch and decode. Because of the reduced instruction set,

decoding requires only 25 percent of the cycle time, leaving

the remaining 75 percent for memory access. During the

second cycle, a dual-port operand read and the ALU or

shift operations are performed; the result is temporarily

stored in the DST register. At the end of the third cycle,

this result is written into the register file. By delaying the

write operation, the basic cycle can be shortened frc)m

read-modi&write to read-modify. Another advantage of

delaying the write operation is that it allows more time for

detecting and processing interrupt requests, thus facilitat-

ing restartabilit y of the system.

Overall execution is pipelined (Fig. 6), so that at any one

time there are three instructions being processed. The

operand fetch is performed in parallel with the instruction

fetch for the next cycle, while the operand write of the

previous instruction is performed simultaneously with

the ALU or shift operation of the current instruction and

the decoding of the next one. This pipelining readily fol-

lows from the regularity of the RISC instruction executicm.

Although the timing sequence of Fig. 6 ensures thlat

there is no contention for datapath resources, performance
may still be degraded by data dependencies among col’a-

secutive instructions. Since the ALU output from one

instruction is not written into the register file until the emd

of the following cycle, the result is not accessible during the

operand fetch of that instruction. The correct data can ordy

be found in the register file after an extra cycle of delay.

686

m
TIME

Fig.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-19, NO. 5, OCTOBER 1984

mm
5. RISC II instruction execution.

mE@ltEl
\

\

INTERNAL FORWARDING

mm=

DELAYED JuMP

mmm

TIME

Fig 6. Instruction pipelinmg and dependencies.

Another type of dependency exists with jump or branch

instructions. In this case the ALU phase performs the

target address calculation, but the result arrives too late to

be used for the next instruction fetch. A single cycle of

delay must be inserted after the jump instruction as well.

In order to minimize performance loss from these pipe-

line dependencies, two strategies are adopted in RISC II.

First, all data dependencies are eliminated by allowing the

data temporarily stored in the DST register (Fig. 4) to be

accessed during operand fetching (internal forwarding).

These dependencies are detected by register address com-

parators on the chip; overhead for this logic is less than 1

percent of the chip area. Jump dependencies are eliminated

through delayed jump execution and by program reorder-

ing. The instruction immediately following the jump in-

struction is always executed before the branch is actually

taken. If possible, some useful instruction is inserted by the

compiler; in the remaining cases a NOOP (no operation) is

inserted. Normally, more than 50 percent of the slots after

branch instructions can be put to use.

Because the RISC II CPU has a single 1/0 bus, oper-

ation of the pipeline must be temporarily suspended when

external data memory is accessed (Fig. 7). Data loads

follow the same timing as instruction fetches, with an

alignment operation replacing instruction decoding. This

data is also stored in the DST register so that dependencies

may be overcome by internal forwarding.

This data 1/0 wait-state could be eliminated with an

additional level of pipelining, but the necessary changes

would be costly. First, two 1/0 operations (instruction and

data) would have to be performed in each cycle, necessitat-

ing two separate 1/0 buses. Second, a dual-port write

would be required in the register file when executing data

loads. Third, a separate wait-state cannot be avoided when

dependencies on the loaded data must be handled. Because

m EEl ::([1:[{:DEl
\ INTERNAL FORWARDING

m EEmEI

Emlm
TIME

Fig 7. RISC II data 1/0 execution.

of these costs and because of the rarity of external data

fetches in RISC II, such a four-way pipeline scheme was

not pursued.

V. CIRCUIT DESIGN AND CELL LAYOUT

Because a large portion of the die is taken up by the

register file, the design of a compact bit cell is crucial. For

RISC II the 3-bus approach of RISC I was thus abandoned

in favor of a 2-bus register file. We started with a standard

6-transistor static cell. A second wordline was added to

allow dual-port reading (Figs. 9 and 10). The dual-port
read is performed with single-ended sensing since differen-

tial sensing would require an additional pair of bitlines.

Normally, these bitlines could pass over the depletion load

devices without enlarging the cell, but with the implemen-

tation technology used, the butting contacts block the

channel where otherwise a second set of metal buses could

have been placed.

Fig. 11 shows this dual-port static cell with its associated

precharge, sensing, and decode logic. The bitlines are pre-

charged prior to reading; during the read, other precharged

buses are driven throughout the datapath. The static NOR

SHERBURNEet a[.: 32-BIT NMOS MICROPROCESSOR

Fig. 8, RISC II chip photomicrograph,

v 00 v DD

b 1 r
WOROLINE A ~ ,-4 WOROLINE B

“TL’NEA*B’TL’NEB— —
Fig. 9. Dual-port static register cell.

decoders utilize series depletion devices with grounded

gates in order to isolate the output node from input

parasitic when charging. The full 5 V signal is passed to

the bootstrapped wordline drivers by use of dynamic de-

pletion mode pass transistors. Each decoding operation

requires two clock phases; decoders are shared for both

reading and writing, leading to a four-phase cycle. Register

write is performed by driving pairs of bitlines differentially

with the write data (as is done in conventional static

RAM’s) and providing identical addresses to both word

decoders.

Precharged buses and logic were used in most areas of

the datapath. The 32-bit ALU is a dynamic ripple carry

design in which the carry is buffered after every four bits.

The shifter utilizes two precharged, bidirectional buses;

this allows both right and left shifts to be performed using

a single 32-bit, arbitrary-amount shifter.

In addition to the 8-input instruction decoder, the con-

trol logic contains circuitry for interrupt processing, for

conditional branch calculation, and for internal forwarding

to resolve data dependencies, The program status word
includes user mode, interrupt state, and condition code

information. To simplify debugging and chip evaluation,

scan in/scan out logic was added to give access to the

machine state, and the four-phase clock and substrate bias

are generated off-chip.

Metal

Polysilicon

1687

v DO

BITLINE B

Vss

BITLINE A

VDD

WOROilNE A WORDbNE B

Fig. 10. Layout of dual-port static bit cell

Fig. 11, Register file cell with decoders and single-ended sensing logic.

VI. CHIP IMPLEMENTATION AND EVALUATION

The RISC II CPU chip was designed and simulated for

compatibility with a range of silicon foundy processes. The

result is a conservative circuit design that can accommc~d-

ate a wide range of process capabilities and parameter

variations. For the layout, the simple and scalable Mead

and Conway design rules [9] were employed. In addition,

since many of our design tools impose such a restriction,

all geometry was restricted to rectilinear features aligned

with the coordinate system (“Manhattan geometry”). The

anticipated fabrication process provides a single level of

metal and one level of about 30 O/square polysilicon. No

buried contacts are available; instead, contact between the

polysilicon layer and the source/drain regions requires, a

metal patch placed over a contact cut overlapping bclth

these two layers, This reduces layout density significantly

because metal wires must be spaced some distance from

these bs.ming contacts. Since no exact process parameters
were available at the time the circuit design had to be

finalized, fairly large parameter variations for various dclp-

ing concentrations, sheet resistivities, and threshold volt-

ages were used in the SPICE2 [10] simulations of the

critical circuits. The RISC II CPU required over forty

688

thousand transistors, yet it was designed, simulated, and

tested using less than three man-years of effort.

The design was found to be functionally correct on its

first silicon run. This is the result of extensive simulation at

several different levels. Processor descriptions were pro-

duced at three levels. First, an ISP description was used to

guarantee that we had defined a useful instruction set. A

second representation was formed with a mixed-level

description, called SLANG [11], spanning the register

transfer and logic gate levels, This “home-brewed” lan-

guage based on Lisp allowed a full description of the chip

behavior using less than 300 explicit’< node.” All the differ-

ent instructions were simulated at this level and compared

against the ISP description to guarantee that our SLANG

description indeed represented a processor with the desired

architectural behavior. The final step was to extract tran-

sistors and their interconnections from the mask geometry

specification, using MEXTRA [12]. The resulting circuit

was used in a switch-level simulator run in tandem with the

SLANG simulator to verify that the actual layout behaved

like the logic description expressed in SLANG. Detailed

circuit simulation using SPICE2 was only used for isolated

critical circuit modules and for tuning the performance of

the various bus systems, However, the complete circuit was

subjected to the timing analyzer program Crystal, written

by Ousterhout [13]. This program identified the critical

delay paths through our circuit and helped us find design

errors that might impair performance, It also identified

modules that might warrant a more detailed analysis with a

SFTCE2 simulation. Because of the thoroughness of these

simulations it is not too surprising that the design was

functionally correct.

The first chips were fabricated with a 4 ~m gate length

process (lambda = 2 ~m) using the MOS Implementation

Service (MOSIS) at the Information Science Institute at the

University of Southern California. The chip size was con-

strained by a package cavity size of about 11 mm, and this

constrained the total length of the datapath. Within this

limit we were able to integrate the desired set of eight

register banks. Unlike the RISC I chip, this design was also

operating close to the expected performance. The chips

with the 4 ~m gates worked with the external clocks set to

a cycle time of 500 ns, which was 5 percent above the
nominal target value. This must be attributed to the availa-

bility of the Crystal timing analyzer.

A few months later, a 3 pm version was created by

simply scaling down the entire mask pattern. This second

batch of chips was implemented at the Xerox PARC

facilities. Even though these chips went through the scaling

procedure and were run on a different fabrication line with

a different process, no new simulations were carried out.

The hope was that our original design had wide enough

margins to tolerate a 4:3 reduction. The scaled-down chips

indeed worked and ran 50 percent faster than the 4 pm

version, i.e., with a cycle time of 330 ns.

The 4 ~m RISC II processor operating at an 8 MHz

clock rate, corresponds to a peak rate of 2 million instruc-

tions per second (MIPS). The chip consumes 1.25 W. The 3

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL SC-19, NO. 5, OCTOBER ~ 984

TABLt3 III

SPECIFICATIONS OF THE RISC II CPU IMPLEMENTATIONS

SPECIFICATIONS

DRAWN GATE LENGTH

DIE SIZE (milz)

REGiSTER CELL AREA

CLOCK RATE

POWER DISSIPATION

REGIsTER FILE

TRANSISTOR COUNT

PIN COUNT

DESIGN TIME

EEI13=
4 pm 3 pm

228 x 406 171 x 304

4.6 m117 2.6 m!l~

8 MHz 12 MHz

125w 183W

138X 32 b,ts

40706

62

2.8 men-years

pm version exhibits a peak throughput a 3 MIPS, with a 50

percent increase in power dissipation. These results were

obtained at room temperature, using a single 5 V supply

and no substrate bias. These specifications are summarized

in Table 111.

Using integer C programs compiled with the standard

UNIX compiler as benchmarks, and the above operating

speeds for calibration, it turns out that both versions of

RISC II can outperform popular processors such as the

Motorola 68000. Hewlett-Packard 9000. Intel 80286, and

the DEC VAX-11/780 [14]. We attribute this surprising

performance to the good match between the RISC archi-

tecture and the needs and constraints of a VLSI single-chip

processor.

VII, SUMMARY

The RISC H CPU was designed with heavy emphasis on

optimizing its architecture for the intended application

area (i.e., running compiled C programs in a UNIX

environment) and on matching the special constraints of

VLSI implementation. Circuit design was kept straightfor-

ward and conservative. The layout was produced with a

rectilinear subset of the Mead and Conway design rules,

but the critical modules used in iterative arrays, such as the

register or ALU cells, were carefully optimized for density

and for low power consumption. Implementation was aimed

at a “standard” 4 flm Si-gate NMOS process that was

becoming readily available from several” silicon foundries.”

Chip performance is not determined by implementation

technology alone. Through careful studies of the needs of
an application area, and proper matching of the architec-

ture to these needs, significant performance gains were

achieved which more than offset the losses due to conserva-

tive layout and implementation technology. By strongly

reducing the size of the implemented instruction set, pre-

cious chip area was freed up for a large local memory

consisting of multiple, overlapping register banks. This

alleviated the chip 1/0 bottleneck by keeping frequently

used operands on the chip. The simple and regular instruc-

tion set also eased the design process by reducing system

complexity. The outcome of this work is a single-chip CPU

that rivals board-level designs utilizing many chips.

SHERRURNEet U1.: ~z-BITNMOSMICROPROCESSOR

Chips have been implemented at two different gate

lengths—4 and 3 ~m—on two different process lines. The

two implementations were f~nctionally cmrect and oper-

ated close to the desired speed in first silicon. This is a

result of extensiv~ simulation at several levels, made possi-

ble by our design environment that places the necessary

tools at the fingertips of the designers.

ACICNOWLEDGMENT

The authors wotdd like to thank the MOS Implementa-

tion Service at USC/ISI for the fabrication of the 4 ~m

RISC II chips and thank A. Bell, J. Knight, and Xerox

PARC for implementing RISC 11 at 3 pm gate length. We

would also like to thank all our colleagues and students

who have helped to create an environment in which such a

project is feasible.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

i&FER33NcEs

R. Supnik et al., “A 32 bit microprocessor with on-chip virtual
memory management,” presented at the IEEE Int. Solid-State Cir-
cuits Conf., San Frahcisco, CA, pp. 178– 180, Feb. 1984.
D. A. Patterson and C. H. S&quin, “A VLSI RISC,” Computer, vol.
15, no. 9, pp. 8-~1~ Sept. 1982.
M. G. H. Katevenrs, k W. Sherbui-ne, D. A. Patterson, and C. H.
S&quin, “The RISC II mitxoarchitecture~’ in Proc, VLSI ’83, Int.
Conf. Very Large Scale Integration, Trondheim, Norway, Aug.
1983, pp. 349-359.
C. Rowen, S. A. Przybylski, N. P. Jouppi, T. R. Gross, J. D. Shott,
and J. Hennessy, “A pipelined 32 bit NMOS microprocessor,” in
Proc. IEEE Int. So[id-State Circui~s Conf., San Francisco, CA, Feb.
1984, pp. 180-181.
D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson,
“Architecture of SOAR: Sma.lltalk on a RISC,” in Proc. 11 zh
Symp. Compuler A rchitecture, Ann Arbor, MI, June 1984.
Y. Tamir and C. H. S5quin, “Strategies for managing the register
file in RISC,” IEEE Trans. Comput., vol. C-32, pp. 977-989, Nov.
1983.
D. Halbert and P, Kessler, “Windows of overlapping registers,”
CS292R Final Rep., Univ. Calif., Berkeley, June 1980.
R. W. Sherburne, “Processor design tradeoffs in VLSI,” Ph.D.
dissertation, Comput. Sci. Div., Univ. Calif., Berkeley, Apr. 1984.
C. A. Mead and L. A. Conway, Introduction to VLSI Systems.
Reading, MA: Addison-Wesley, 1980.
L. W. Nagel, “ SPICE2: A computer program to simulate semicon-
ductor circuits,” ERL Memo ERL-M520, Univ. Calif., Berkeley,
May 1975.
K. S. Van Dkye, “SLANG: A logic simulation language,” Masters
thesis, Univ. Calif., Berkeley, June 1982.
D. T. Fitzpatrick, “ MEXTRA: A Manhattan circuit extractor,”
ERL Memo M82/42, Univ. Calif., Berkeley, May 1982.
J. K. Ousterhout, “Crystal: A timing analyzer for NMOS VLSI
circuits,” in Proc. 3rd (Mtech Conf, VLSI, Pasadena, CA, Mar.
1983.
D. A. Patterson, “ RISC watch,” Computer Architecture News, vol.
12, pp. 11-19, Mar. 1984.

Robert W. Sherbume, Jr., received the B.S. de-
gtee in electrical engineering from Worcester
Polytechnic Institute in Worcester, MA, in 1978.

He received the lvf.S. and Ph.D. degrees in 1981
and 1984, respectively, in electrical engineering

and computer science from the University of

California, Berkeley.

He is now an Assistant Professor with the

Electrical, computer, and Systems Engineering

Department, Rensselaer Polytechnic Institute,

Troy, NY. His research interests include VLSI

architecture, microarchitecture, and design optimization.

689

Manolis G. ~. Katevenis (S’76-S’82-M’83) was

born in Athens, Greece, in 1955. He received the

Diploma degree in electrical engineering, from

the Nationat Technical University of Athetis,

Greece, in 1978, and the M. SC. and Ph.D. degrees

in electrical engineering and computer science

from the University of California, Berkeley, in

1980 and 1983, respectively.

During his graduate studies he has been a

Research Assistant with the Electronics Research

Lab. University of California. Berkelev. and from

1981-1983 he held an IBM graduate” student fellowship. His doctoral
research was on rekhtced instruction s~t computer architectures for VLSI,
and on the RISC II NMOS microprocessor. Since January 1984, he has
been an Assistant Professor in the Computer Science Department and
Computer Systems Laboratory of Stanford University, Stanford, CA.

Mr. Katevenis is a member of the Association for Computing Machin-

erv, the Techrtical Chamber of Greece, and the Association of Computer

S~ientists of Greece.

David A. Patterson received the Ph.D. degree in
computer science from the University of Cali-
fornia, Los Angeles, in 1976, while employed by
Hughes Aircraft Company designing and evaluat-
ing computers.

Since 1977 he has been a member of the fa-
culty in the Computer Science Division, Depart-

ment of Electrical Engineering and Computer

Sciences, University of California, Berkeley, and
was named Associate Professor in 1981. He

teaches computer architecture at both the

graduate and undergraduate level, and in 1982 he received the Dis-

tinguished Teaching Award froin the Berkeley Division of the Academic

Senate of the University of California. He spent the Fall of 1979 on leave
of absence at Digital Equipment Corporation developing microprogram
design tools. In the next year he led the design and implementation of
RISC I, a 45000 transistor microprocessor. He is currently leading the
Smalltalk On A RISC (SOAR) project, whose goal is to produce a
microprocessor for Smalltalk-80. His research tries to combine popular

software, experimental architecture, and very large scale integrated cir-

cuits to create more efficient computer systems.

Carlo H, Sequin (M71–SM80–F’82) received
the Ph.D. degree in experimental physics from
the University of Basel, Switzerland, ih 1969. His

subsequeftt work at the Institute of Applied
Physics of the University of Basel concerned

interface physics of MOS transistors and prob-
lems of applied electronics in the field of

cybernetic models.
From 1970 to 1976 he worked at Bell Tele-

phone Laboratones, Murray Hill, N:, in the MOS

Integrated Circuit Laboratory on the design and

investigation of charge-coupled devices for imaging and signal processing

applications. He has written many papers in that field and is an author of
the first book on charge-transfer devices. He spent the academic year 1976
to 1977 on leave of absence with the University of California, Berkeley,
where he lectured on integrated circuits, logic design, and micro-

processors. In 1977 he became a Professor with the Department of

Electrical Engineering and Computer Sciences. His research interests
include computer architecture and design tools for very large scale in-
tegrated systems. In particular his research concerns multi microprocessor
computer networks, the influence of VLSI technology on advanced com-
puter architecture, and the implementation of special functions in silicon.
His most recent interests lie in the area of computer graphics and solids
modeling. From 1980 to 1983, he was head of the Computer Science
Division in the EECS Department.

Dr. S6quin is member of Association for Computing Machinery and the

Swiss Physical Society.

