EECS 322: Computer Architecture

Instructor: Chris Papachristou

Room 502 Olin, 216-368-5277, cap@alpha.ces.cwru.edu

Instructor: Frank Wolff

Room 514 Olin, 216-368-5038, wolff@alpha.ces.cwru.edu

Outline

1. Introduction

Introduction to architecture. Turing machine computation model. Basic principles of machine design. Computer evolution. Technology impact on architecture.

2. Instruction Set Design

Instruction set architecture. Cost and performance measurements. Classification of instruction sets. Examples of instruction set machines. Quantitative comparisons. Reduced Instruction set design (RISC).

3. Computer System Design

Computer design methodology. Design levels. Review of gate-level design. Register level components and design. Design CAD systems.

4. Data Path Design

Basic processor datapath design. Design of Arithmetic Logic Unit (ALU). Design of Fast ALus. Multipliers and Dividers. Floating Point Units.

5. Instruction Sequencing and Control

Instruction control steps and sequesning. State machine controllers. Hardwired control. Microprogrammed control. PLA controllers. Microsequencers. Examples.

6. Pipeline Design

Fundamental principles. Arithmetic pipeline structures. Instruction pipeline techniques. RISC instruction pipelines. Pipeline sequencing and control. Floating-point pipelines.

7. Memory Systems

Memory technologies. RAM design. Memory hierachies. Cache memories. Memory allocation techniques and memory management.

8. Input - Output and Communications

Communication methods. Bus control and timing. More about buses. Interupts and DMA.

Class Web Site: http://129.22.16.45/eecs_322