EECS 322
Test 5 sample
Monday May 1, 2000

Name:

Problem 1 (20%). Given the following direct-mapped cache architecture:

All instructions use byte addresses. The address bus is 8 bits. A word size is 16 bits.

Total data cache size 4 words.

1a. (2%) How many bits is the index?

= log2 cache size in words = log2 4 = 2

1b. (2%) How many bits is the byte offset?

= log2 number of bytes per word = log2 word size/8 = log2 16/8 = log2 2 = 1

1c. (2%) How many bits is the tag size?

= address size – index size – byte offset size = 8 – 2 – 1 = 5

1d. (14%) For the following instruction sequence, fill in the access bits to the data cache
tag
index
byte offset
instruction

00100

00
0
lw
$1, 32($0)

00100

01
0
lw
$2, 34($0)

add
$3, $1, $2

00101

10
0
sw
$3, 44($0)

00001

10
0
lw
$4, 12($0)

00101

00
1
lbu
$5, 41($0)

beq
$1, $2, 34($0)

Problem 2 (10%). Given the following 2-way set associative cache architecture:

All instructions use byte addresses. The address bus is 8 bits. A word size is 16 bits.

Total data cache size 4 words.

2a. (2%) How many bits is the index?

= log2 (cache size in words / N-way) = log2 (4/2) = log2 2= 1

2b. (2%) How many bits is the byte offset?

= log2 number of bytes per word = log2 word size/8 = log2 16/8 = log2 2 = 1

2c. (2%) How many bits is the tag size?

= address size – index size – byte offset size = 8 – 1 – 1 = 6

2d. (4%) For the following instruction sequence, fill in the access bits to the data cache
tag
index
byte offset
instruction

001000

0
0
lw
$1, 32($0)

001000

0
1
lbu
$2, 33($0)

Problem 3. (15%) For the following instruction sequence fill in the direct-mapped cache

The word size is 16 bits.

Memory[0]=0x1066; Memory[2]=0x1453; Memory[16]=$3=0x1776; Memory[20]=0x1914;

3a. (5%) Fill in the miss cache column.

tag
index
byte offset
instruction
Valid or Tag
Cache Miss?

000
00
0
lw
$1, 0($0)
yes - valid

000
01
0
lw
$2, 2($0)
yes – valid

010
00
0
sw
$3, 16($0)

010
10
1
lbu
$5, 21($0)
yes

010
10
0
lw
$6, 20($0)

3b. (10%) The final state of the direct mapped data cache is:

index
valid
tag
data

00

N(Y
000(010
0x1066(0x1776

01

N(Y
000
0x1453

10

N(Y
010
0x1914

11

N

Problem 4. (15%) For the following instruction sequence fill in the 2-way set associative LRU cache

The word size is 16 bits.

Memory[0]=0x1066; Memory[2]=0x1453; Memory[16]=$3=0x1776; Memory[20]=0x1914;

4a. (5%) Fill in the miss cache column.

tag
index
byte offset
instruction
Valid or tag
Cache Miss?

000
0
0
lw
$1, 0($0)
yes

100
0
0
sw
$3, 16($0)

000
0
1
lbu
$5, 1($0)

101
0
0
lw
$6, 20($0)
yes – flush oldest reference

000
1
0
lw
$1, 2($0)
yes

4b. (10%) The final state of the 2-way set associative LRU data cache is:

index
valid
tag
data

0
N(Y

000
0x1066
(accessed by lw and lbu)

N(Y

100(101
0x1776(0x1914

1

N(Y

000
0x1453

N

Problem 5. (10%) Given a 1-word cache entry block size and one word wide memory bus organization (figure 7.13a, page 561), and the following access times:

1 clock cycle to send the address,

8 clock cycles to read access DRAM, 16 clock cycles to write to DRAM

1 clock cycle to to send a word

5a. (5%) What is the miss penalty for a write-through direct mapped cache?

The miss penalty only include data reads not writes, since write-through is handled on the store instruction.

Miss penalty = (1 send address) + (8 clocks to read) + (1 send word) = 10 clock cycles

5b. (5%) What is the miss penalty for a write-back direct mapped cache?

This miss penalty includes only data reads BUT on write back the cache entry may contain a block not previously written out before a new entry can be read in (page 554).

Miss penalty = (1 send address) +(1 send word) + 1((16 clocks to write)

+ (1 send address) + (8 clocks to read) + (1 clock to send word) = 28 clocks
Problem 6 (20%). Given the following virtual memory architecture:

All instructions use byte addresses. The virtual address bus is 16 bits. A word is 16 bits.

Total page size 8 bytes. The real memory address bus is 16 bits.

6a. (2%) How many bits is the page offset?

= log2 number of bytes per page = log2 8 = log2 23 = 3

6b. (2%) How many bits is the physical page number size?

= virtual address bit size – page offset bit size = 16 – 3 = 13

6c. (2%) How many page table entries?

= virtual address size/page size = 216 / 23 = 213

6d. (2%) How large is the page table?

= #entries ((bytes per entry to hold the real memory address)

= 213 (21 = 214 bytes = 16,384 bytes (i.e. a quarter the size of memory!)
6e. (12%) For the following instruction sequence, fill in the data access bits to the page table
virtual page number
page offset
instruction

0000 0000 00100

000
lw
$1, 32($0)

0000 0000 00100

010
lw
$2, 34($0)

0000 0000 00101

001
lbu
$5, 41($0)

Problem 7. (10%) Assume 2K real memory, LRU, a page size of 1K and no pages loaded.

Fill in the page fault columns

instruction
Page fault?
Flush which page?
Write flushed page to disk?
Load what new page

lw
$1, 32($0)
yes

0..1023

lw
$2, 34($0)
no

lbu
$5, 41($0)
no

sw
$6, 1100($0)
yes

1024..2047

lw
$7, 2000($0)
no

lw
$1, 4100($0)
yes
0..1023 (oldest)
No – only lw’s
4096..5119

lw
$2, 32($0)
yes
1024..2047 (oldest)
Yes – had a sw
0..1023

Does not access data memory. Therefore does not access the data cache!

Load byte must first read the word from memory (20) and then separates out the byte.

A store never creates a cache miss! Cache misses are a property of reads

PAGE
3

