Name:	email:	
C C.		

Problem 1 (20%). Show each step of the pipeline machine (page 470 and 469) for the following instruction sequence: (note: Z is the zero flag from the ALU)

Assume \$2=9, \$4=8; Mem[12]=742; Mem[16]=1769. Treat the "nop" instruction as "add \$0,\$0,\$0".

or \$2, \$4, \$4 **#opcode \$rd, \$rs, \$rt** sw \$4, 8(\$4) **#opcode \$rt, offset(\$rs)** nop nop

C lo c k	<if id=""> <pc, ir=""></pc,></if>	<id ex=""> <wb,m,ex,pc,a,b,s,rt,r d=""></wb,m,ex,pc,a,b,s,rt,r></id>	<ex mem=""> <wb,m,pc,z, alu,="" b,="" r=""></wb,m,pc,z,></ex>	<mem wb=""> <wb,mdr,alu,r></wb,mdr,alu,r></mem>
0	<0,?>	,?,?,?,?,?,?,?	,?,?,?,?,?	,?,?,?,?
1	<4,"or \$2,\$4, \$4"> <u>observe that</u> or \$rd=\$2,\$rs=\$rt=\$4	,?,?,?,?,?,?	,?,?,?,?,?	,?,?,?
2	<8,"sw \$4,8(\$4)"> <u>observe that</u> sw \$rt=\$4,8(\$rs=\$4)	<10, 000, 1100, 4, 8, 8, X, \$4,\$2> <u>observe that</u> <wb=10, ex="1100," m="000," pc="4,<br">fetch reg[\$rs \rightarrow\$4] \rightarrow 8 \rightarrow A, fetch reg[\$rt \rightarrow\$4] \rightarrow 8 \rightarrow B, \$S=00100 0000 100101=X, \$rd=\$4></wb=10,>	,?,?,?,?,?	,?,?,?
3	<12, "nop"> observe that add \$rd=0,\$rs=0,\$rt=0	<0X,001, X001, 8, 8, 8, 8, \$4,\$X> observe that <wb=0x, ex="X001," m="001," pc="8,<br">$reg[\\$rs \rightarrow \\$4] \rightarrow 8 \rightarrow A,$ $reg[\\$rt \rightarrow \\$4] \rightarrow 8 \rightarrow B, S=8, \\$rt=\\$4,$ \$rd=\$X></wb=0x,>	<pre><10, 000, X, 0, 8, 8, \$2> observe that <wb=10, \$rd)="\$2" (don't="" +="" 8="8," a="" alu="A" b="8," branch),="" care,="" destination="" flag="Z=0," m="000," not="" or="" pc="X" r="(\$rt" zero=""></wb=10,></pre>	,?,?,?,
4	<16, "nop"> observe that add \$rd=0,\$rs=0,\$rt=0	<pre><10, 000, 1100, 12, 0, 0, 0, \$0, \$0> observe that <wb=10, \$rd="\$0" \$rs="\$0=0=A," \$rt="\$0," ex="1100," m="000," pc="12," s="0,"></wb=10,></pre>	<pre><0X, 001, X, X or 0, 16, 8, X or \$4> observe that <wb=0x, \$4="" \$rd)="X" (don't="" +="" 0,="" 8="16," =="" a="" alu="A+offset" b="8," branch),="" care,="" flag="Z" m="001," not="" or="" pc="X" r="(\$rt" x="" zero=""> (don't care, no register writeback) Store to memory Mem[ALU=16]=8</wb=0x,></pre>	<10, X, 8, \$2> Register writeback to \$4 No memory fetch Observe that <wb=10, alu="8," mdr="X," r="\$2"></wb=10,>
5	<20, "nop"> observe that add \$rd=0,\$rs=0,\$rt=0	<10, 000, 1100, 16, 0, 0, 0, \$0, \$0> observe that <wb=10, ex="1100," m="000," pc="16,<br">\$rs=\$0=0=A, \$rt=\$0=0=B, S=0, \$rt=\$0, \$rd=\$0></wb=10,>	<10,000,X,0,0,0,\$0> observe that <wb=10, alu="A+B=0+0=0," b="0," m="000," pc="X," r="\$0" z="0,"></wb=10,>	<0X, X, X, X or \$4> Write to Memory

Problem 2. Assume a simple 6 stage pipeline with the following execution times

1	IF	Instruction fetch 1st part	3 ns
2	IS	Instruction fetch 2nd part	4 ns
3	ID	Register Read	2 ns; Branch decision made here
4	EX	ALU	3 ns
5	MEM	Data Access	8 ns,
6	WB	Register Write	2 n s

This computer has the following instructions:

Instru	ıction	Operation
add	\$rd, \$rs, \$rt	\$rd = \$rs + \$rt
beq	\$rs, \$rt, disp16	pc = pc+2+(\$rs-\$rt=0?disp16:0)
lw	\$rt, addr16(\$rs)	\$rt = Mem[adr16+\$rs]
sw	\$rt, addr16(\$rs)	Mem[addr16+\$rs]=\$rt

2a (16%) Fill in the following tables

Za (1070) 1 III					1	1	1		1
Instruction	IF	IS	ID	EX	MEM	WB	Total	Multi-	Instruction
							Time	Cycles	Mix
		4						-	
add	3	4	2	3		2	14	5	50%
								1	
beq	3	4	2				9	3	25%
I		4		•	•			^	470/
lw	3	4	2	3	8	2	/ 2	6	17%
SW	3	4	2	3	8		20	/ 5	8%
SVV	3	7	_	3	U		20	3	0 70
							/		

2b (5%) Fill the following table and show work.

Instruction	Clock	CPI	MIPS
	frequency	(no hazards)	(no hazards)
Single-cycle CPU	1/22ns		45.5/1
	=45.5 MHz	=1	= 45.5 MIPS
Multi-cycle CPU	1/8ns	5*50% + 3*25% + 6*17% + 5 [*] 8%	125/4.67
	=125 MHz	=4.67	=26.8 MIPS
Pipeline CPU	1/8ns	(no hazards = no dependancies = no stalls)	125/1
	=125 MHz	=1	=125 MIPS

The following parts refer to the pipelined machine only

For the following code: Assume no forwarding.

2c (15%) For the following code: Assume <u>no</u> forwarding and <u>no</u> branch prediction.

Draw lines showing all the data dependencies and show the pipeline sequence (IF,IS,ID,EX,M,WB)

and draw lines (snowi	ing th	e tor	vara⊩	ng. N	ote:	Branc	n ded	cision	is m	ade ir	i the	ID Sta	яge.
Time _	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Ī	Time	\wedge		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	sub	\$3,	\$4, \$5	IF	IS	ID	EX	M	W										
L																			
	beq \$1	\$3	loop		IF	IS	ID	ID	ID	EX	M	W							
		U																	
I	add	\$4,	\$4, \$5			IF	IS	IS	IS	ID	EX	M	W						
ı																			

2d (12%) Draw lines showing all the data dependencies in "Time" column.

and show the 6-stage pipeline seq	guence (IF. IS. ID), EX, M, WB	for the following code
and one with the educage pipeline eeq	1001100 (11 , 10, 10	,/ .v., vv/	, ioi tiio ionoming oodo

Time		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SW	\$1, 4(\$2)	<u>L</u>	IS	ID	EX	M	W										
sub	\$4 , \$1, \$2		IF	IS	D	EX	M	W									
add	\$5 , \$4 , \$ 2			IF	<u>s</u>	ID	ID	ID	EX	M	W						
lw	\$3, 8(\$5)				Ŀ	IS	IS	IS	ID	ID	ID	EX	M	W			

2e (12%) Using forwarding, show the 6-stage pipeline sequence (IF, IS, ID, EX, M, WB) and draw lines showing the forwarding

	and <u>draw lines</u> showing the forwarding.																
Time		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SW	\$1, 4(\$2)	<u>L</u>	IS	ID	EX	M	W										
sub	\$4 , \$1, \$2		IF	IS	ID	EX	M	W									
add	\$5 , \$4 , \$ 2			IF	IS	ID	EX	M	W								
lw	\$3, 8 (\$5)				IF	IS	ID	ĒΧ	M	W							

2f (5%) Increase the number of pipeline stages to 7 stages. What stage would you split and why?

I would split the MEM stage into 2 stages (Mem1=4ns and Mem2=4ns) since is the slowest resource (8ns) of all the others.

Note: any other combination would not be optimal: Mem1=3ns and Mem2=5ns

Decreasing the worst case stage delay allows for the pipeline clock to increase.

This results in a faster MIPS.

2g (5%) What is the 7-stage pipeline clock? **4ns or 250 MHz** and (assuming no hazards) MIPS= **250 MIPS**

MIPS = Clock/CPI = 250 Mhz / 1CPI

Note: 250 MIPS is now faster than all cases in problem 2b!

Problem 3. Show all calculations for the following questions.

Assume an add takes 1 cycle if no dependency and if dependant then 3 clocks Assume there is a 30% data dependency.

Assume a branch takes 2 cycle if true prediction and if false prediction then 7 clocks.

Assume that 15% of the branches are mispredicted.

3a (5%) What is the average add instruction time in clocks? __1.6___

$$1*70\% + 3*30\% = 1.6$$

3b (5%) What is the average branch instruction time in clocks? ____2.75____

Over the past three years, the *Goldman Sachs High Technology Group* has been the lead manager for initial public offerings (IPOs) of 129 technology companies. They (www.gs.com/hightech) would like you to have access to the following *extra credit which can be used for this and previous exams*.

For the following instruction sequence fill in the <u>direct-mapped</u> writeback data cache. The word size is 16 bits. Memory[0]=\$4=0x742; Memory[42]=\$3=0x1412; Memory[52]=0x1585; Memory[58]=0x1769;

GS1a) (5%) Fill in the miss cache column.

tag	index	byte offset	Instruction	Cache Miss?
111	01	0	lw \$1, 58(\$0)	Yes
110	10	1	lbu \$2, 53(\$0)	Yes
110	10	0	sw \$3, 52(\$0)	No (already loaded by Ibu \$2,53(\$0))
000	00	0	lw \$4, 0(\$0)	Yes
101	01	1	lbu \$5, 43(\$0)	Yes
111	01	0	lw \$6, 58(\$0)	Yes (flushed out by Ibu \$5,43(\$0))

GS1b) (10%) Show all states and underline the final state of the direct mapped data cache:

Index	Valid	Dirty	Tag	Data
00	N→Y	N	000	0x742
01	N→Y	N	111→101→111	0x1779→0x1412→0x1769
10	N→Y	N→Y	110	0x1585→0x1412
11	N	N		

GS2a. (10%) Assume 1536 bytes of real memory (0-511)(512-1023)(1024-1535); **LRU**, a page size of 512 bytes and no pages loaded in memory. Fill in the page fault columns. (Blank space implies No)

	instruction		Flush which	Write flushed	Load what new	Load into what
		fault?	real page?	page to disk?	virtual page	real page
lw	\$1, 58(\$0)	Yes			0 (=0511)	0 (=0511)
SW	\$7, 52(\$0)	/				
lw	\$5, 1412(\$0)	Yes			2 (=10241535)	1 (=5121023)
lw	\$2, 742(\$0)	Yes			1 (=5121023)	2 (=10241535)
SW	\$6, 1582(\$0)	Yes	0 (=0511)	Yes	3 (=15262047)	0 (=0511)
sb	\$1, 43(\$0)	Yes	1 (=5121023)		0 (=0511)	1 (=5121023)
lbu	\$2, 1769(\$0)					

GS2b.. (5%) Fill out the TLB after execution of part GS2a. (hint: think of a fully associative cache)

Valid	Dirty	Virtual Page Tag	Physical Page Number
$N \rightarrow Y \rightarrow N \rightarrow Y$	$N \rightarrow Y \rightarrow N \rightarrow N$	0	X→0→X→1
N→Y→N	$N \rightarrow N \rightarrow N$	2	X→1→X
N→Y	$N \rightarrow N$	1	X→ 2
N→Y	$N \rightarrow N$	3	X→ <mark>0</mark>

Note: page 0 = 0..511, page 1 = 512..1023, page 2 = 1024..1535, page 3 = 1536..2047, ...