T A
oy 2

Instructor: Francis G. Wolff
wolff@eecs.cwru.edu
Case Western Reserve Universit
This presentation uses powerpoint animation* piease vieﬁd%

Summary: Instruction Hazards

In@%ruction Class Integer Application Floating-Point (FP) Application
Integer Arithmetic 50% 25%
FP-Arithmetic 0% 30%
Loads 17% 25%
Stores 8% 15%
Branches 25% 5%
No-Forwarding Forwarding Hazard
R-Format 1-3 1 Data
Load 1-3 1-2 Data, Structural
Store 1 1-2 Structural
No Delay Slot Delay Slot Hazard
Branch 2 1 Control
(decision is made in the ID stage)
Branch 3 1 Control
(decision is made in the EX stage)
Jump 2 1

Structural Hazard: Instruction & Data memory combined.

Ref: http://www.sun.com/microelectronics/whitepapers/UltraSPARCtechnology/

R

ISC camps
—

“Metric Demons”
SPEC-int/ MHz
Emphasizes
“cycles/instruction”

Berkeley RISC
“Register Windows”

MicroSPARC
5-stage pipeline
7 register windows

UltraSPARC, 64-bit
9-stage pipeline
“Superscalar”

4 instructions/cycle

“Speed Demons”
Emphasizes
“clock speed”

Stanford RISC I

MIPS R2000, 32-bit
5-stage pipeline

MIPS R4000, 64-bit

[Skakem96]

——, %]

—
]

8-stage pipeline
“Superpipelined”

MIPS R8000, 64-bit

5-stage pipeline/4-issue

“Superscalar”

[Stakem96] A Practitioner’s Guide to RISC Microprocessor Architecture, Patrick H. Stakem,
1996, John Wiley & Sons, Inc., QA 76.5.s6957, ISBN 0-471-13018-4

MIPS R10000, 64-bit
6-stage integer pipeline
| 4-issue

“Superscalar”

Instruction Level Parallelism (ILP)

Superpipelined scheme

 uses a longer pipeline with more stages to reduce cycle time

* simple dependencies: structural, data, control pipeline hazards.
* requires higher clock speeds

e require little additional logic to baseline processor

* Branches cause a latency of 3 internal clocks and loads a 2-
cycle latency.

* However, superpipelining increases performance, because each
stage can run at twice the system clock.

Instruction Level Parallelism (ILP)

&

eSuperscalar scheme

* multiple execution units by duplicating the functional units (ALUs)

« combinatorial dependance problem

[] instructions can only be issued only if they are independent

* require sophisticated & complex logic (i.e. instruction Scheduler)

R;4OO processor

Eoth E4000 and E4400 115=:

— True 64bit architecturs

— COn—chip TLE for virtual—
to—physical address translation

— 8—stage superpipehned

100MHz offers architechre 1500Hz R4400 offers
85 MIFS, 16 Mflops, ~ large mtegrated caches 136 MIPS, 24 Mflops,
70 BPECmarks 100 SPECmarks.

* UltrasPARC iz a high-valume processar —the R4400 is a
| ow volume processar

* UltrasPARC enjoys the installed baze of the SPARC
product lime — the B4400 has a =zmall installed baze

* UhtrasPARC is binary compatible with other SPARC
processore — the R4400 has narrow application support

* UltrasPARC-1 iz network and multirn edia ready —the
F4400 does not provide multimedia support
* UltrasPARC provides high performance and high

bandwidth — the R4400 provides com paratively low
imteger and floating point performance

Ref: http://sunsite.ics.forth.gr/sunsite/Sun/sun_microelectronics/UltraSparc/ultra_arch_versus.html

LP Comparisons
Clock

Bus speed
Pipeline
Superscalar
Branch prediction

TLB

L1 I/D-cache
Associativity
L2 cache

CMOS technology
Fabrication Vendor
Year

Voltage
Transistors
Specint92/fp92
SpecInt95/fp95
Cost:

MIPS R4400

250 MHz

50/66/75
8-stage
1-issue
no

48 even/odd
16k/16k
1-way (direct)
1 Mb

0.35u

NEC, IDT, Toshiba
1993

3.3 volts

2.2 million

175/178

5.07/?

$1250

UltraSparc |

167 MHz

83 Mhz
9-stage
4-issue
yes

64-Inst/64-Data
16k/16k

2-way

0.5Mb

0.5u 4 layers
Fujitsu

1995

3.3 volts
3.8-5.2 million
250/350
6.26/9.06
$1395

Ref: http://sunsite.ics.forth.gr/sunsite/Sun/sun_microelectronics/UltraSparc/ultra_arch_versus.html

http://www.mips.com/Documentation/R4400_Overview.pdf
http://www.spec.org/osg/cpu95/results/res96q3/cpu95-960624-00962.html and http://www.eecs.umich.edu/~tnm/theses/mikeu.pdf

R4000: no dynamic branch prediction
: R4000 Performance

 Notideal CPl of 1:
— Load stalls {1 or 2 clock cycles)
(2 cycles + unfilled slots)
: RAW data hazard (latency)
g FP structural stalls: Not enough FP hardware (parallelism)

4.5 +

4 | -

eqntott espresso qoe i doduc nasa’? ora spice2gb suZcor tomcaty

m Base @ Load stalls m Branch stalls o FP result stalls @ FP structural stalls

Differences Between the MIPS R4400 and UltraSPARC-I
7 e

 The MIPS R4400 uses an 8-stage pipeline architecture, and is
less efficient than the superscalar, pipelined UltraSPARC-I.

 Although it is an integrated processor, the R4400 requires
several other modules in order to incorporate it into a system.

» External secondary caches (L2) must be designed around the
processor, and multiprocessor and graphics support are not
provided.

e The highly integrated UltraSPARC-I, utilizing on-chip caches, an
advanced processor design and UPA architecture, requires little to
complete its chip set, significantly easing its integration into
systems.

R4400 Bus

73N Hz BA400 [ntemal
1500 Hz E4400 Internal

16KB | CPU | ed-bE e || L2 cache

[-Cache Data 128 bit Secondary
FPU Paths Cache 15ns
16KB 150WH
Z

D-Cache Superpipelined

1

CPU Bus (64 bit) 400 MB/sec peak I
Memory DMUX CPU
c;;}:;ﬂ ﬁ ABICs Mermory

1

GIC Bus (32 bit on Indigo, 64 bit on ndigoZ) 267 MB/sec sustained I

Peripheral Graphics [#2 Expansion
Control Interface - GIC on Indigo
ASIC ASIC - GIC and EISA on Indige2

{on Graphics Board) Ref: http://www.futuretech.vuurwerk.nl/r4k150upgrade.html

R;OOO Pipeline [Heinrich93]

R O, O, o O, & O, b P, O O, O b, b D, P D,

stage| |IF 1S RF EX DF DS TC WB

e |[F - Instruction Fetch, first half

* |S - Instruction fetch, Second half
* RF - Register Fetch

« EX - Execution (branch compare)
 DF - Data Fetch, first half

e DS - Data fetch, Second half

« TC - Tag Check

« WB - Write Back

[Heinrich93] MIPS R4000 User’s Manual, Joseph Heinrich, Prentice-Hall, 1993, QA76.8.m523h45,
ISBN 0-13-105925-4

R4400 SuperPipeline

Stage I= 1S RF EX DF DS TC WB
| I-DEC
decode
I-Cache |—» - »ALU |—»| D-Cache ';39
ile
., Reg
File
I-TLB Addr D-TLB
Address add Address
Translation Translation
N I-Tag D-Tag
Check Check

R4000 Pipeline stages: IF & IS

IF - instruction Fetch, First half

* PC: Branch logic selects an instruction address and
e instruction catch fetch begins

 |-TLB: instruction translation lookaside buffer begins the
virtual-to-physical address translation

IS - Instruction fetch, second half

« Complete instruction catch fetch and

e the virtual-to-physical address translation

R;OOO Pipeline stages: RF o

RFE - reqister fetch

e |-DEC: instruction decoder decodes the instruction and checks
for interlock conditions

e instruction cache tag is checked against the page frame
number (PFN) obtained from the ITLB.

* Any required operands are fetched from the register file

R4000 Pipeline stages: EX

EX - execution

* Register-to-register instructions: The ALU performs arithmetic
or logical operation

e Load & Store Instructions: the ALU calculates the data virtual
address (i.e. offset + base register).

* Branch instructions: The ALU determines whether the branch
condition is true & calculates the virtual target address.

R4000 Pipeline stages: DF & DS

DF - data fetch, first half

* Register-to-Register: No operations are performed during DF,
DS, and TC stages

« Load & Store instructions: The data cache fetch and the data
virtual-to-physical translation begins

e Branch instructions: address translation and TLB update
begins

DS - data fetch, second half

* Load & Store: completion of data cache fetch & data virtual-to-
physical translation. The shifter aligns data to its word or
doubleword boundary

* branch: completion of instruction address translation and TLB
update

R4000 Pipeline stages: TC & WB

TC - Tag check

e Load & Store instructions: the cache performs the tag check.

 Hit or Miss: physical address from TLB is checked against the
tag check to determine if there is a hit or miss.

WB - write back

* Register-to-register & load: the instruction result is written back
to the register file

e Branch: no operation

R10000 superscalar architecture

&

Liemr af Warld

External Agent
o+ Cluster Controller

PRI R RIRINIRIRIRIRININIRIRININIRININININININININIRININERIN]]N FIRIRIRIRIRINIRLN] ™
o R]_OOOO I 10 4 0 IGO0 Micrapracessars mpmmmeeell Soen Tacke =
: wmay be direcrly camneeied. . H H
R LRI IR IR IR NIRRT RN NININIRIAIRINIRIRIRIRINT],] LIRIRIRIRIRTRINTIRIL]

avsreny Bus: 84l dara, b Sheck, 12-bir conmnand

- g 1 b Se - = IOy S Addross

= 128-bar refill 128 B rofill arwriichack | = N

= Instructlon Cache Data Cache = 2647 .

= 32K-bytes 32K-bytes =

= | 2fway Set Assoclative 2/way Set Assoclatlve | =

= - = Daa

= I§-yord blocks 2 Banks 2 >

E Thealigned ancess Epard Macks E 12849

E Addr Fawr 32-bir e foich AdIr i b laad ar srare E

E F 3 F ¥ 9 T * E

= . = Secondary Cache

= y Swiich | = { 512K 10 16 M-buie)
- l F ¥ Y = Schranges Srane §AM
- TYY =

= = {4 M-be cacke requares
AR Address« TLB |= sewe 2 56T 8- iy FaM i ps)
== Quene | F 3 =

= 'g b Adr.Cale.| =

= g -au Eﬂ v -

=| M B g . =

- - | 4 -

z g 5 Queue |, ¥ aivz |3

S g E H

E g =i ﬁ E al N E

E Fli.Pt. P ﬁ_gn m ¥ Adder g

: Quene | % P —— :

z &

Ref: http://lwww.sgi.com/processors/r10k/tech_info/Tech_Brief.html

R

10000 - superscalar

&

7 Pipeling Stages

— e,
—_— Y
Stage 1 Stage 2 Stage 3 Stage 4 Stage b Stage B Stage 7
Fetch Decode lssue Execute Execute Execute Store
"__----"'----..h||I|I| “
(FPAdd Pipaline f{ saue | R | Fage -1 FAdd - 2 FAga-3 |Resul
FP Queue
P) Floating-Point Queue
FP Multiply Pipeling | | 1sqe | rE [FMpy - FMpy -2 | Fmpy-3 [Resut and Registers
(FP Queue)
] g
Execution .4'”“9!19"' ’?'—U F’épe“”e ssue | AF ALU1 Result
Pipelines nteger Lueue)
Integer ALU Pipeline
lssue | RF ALUZ2 Hesult -
lIrteger Queue) » Integer Aegister Operands
Load/Store Pipeline | | jsaue | AF | Aoar.cCale | Data Cache |Result
\ (Address Gueles)

Instruction Fetch Pipeling

Prirnary
Instruction

sache
=

Decode

4 Instruction/Cycle Fetch and Decode

Eranch Unit

Read operands from Floating-Point Translation-Lookaside Buffer

of Integer Aegister Files

BEranch Address (one branah can be handled each ayoie)

Functional Units (Execute Instruction)
Ref: http://www.sgi.com/processors/r10k/manual/T5.HW.ChO1.intro_ AFrame_16.gif

R10000 die
&

R10K die size 16.6mmx 17.9mm

Insttiiction
Cache

Ddtd
Cache

Register
Rename

R10000

SPECIint95 base 14.1
SPECIint95 peak 14.7 SPEC{p95
base 22.6

SPECp95 peak 24.5

200 MHz Clock

|/D-cache: 32k/32k

TLB: 64 entries
Virtual Page Sizes: 16k-16M

0.35u 4-layer CMOS technology
17 mm x18 mm chip

contains about 6.7 million
transistors

Including about 4.4 million
transistors in its primary caches.

Ref: http://www.byte.com/art/9801/sec4/art4.htm

Pgnciple of Locality o

* Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

e Two types of locality

« Temporal locality (locality in time)
If an item Is referenced, then

the same item will tend to be referenced soon
“the tendency to reuse recently accessed data items”

o Spatial locality (locality in space)
If an item Is referenced, then

nearby items will be referenced soon
“the tendency to reference nearby data items”

Figure 7.2

o -

—]

C@Che Example

Time 1: Hit: In cache

Processor

Time 3: deliver to CPU

I Data are transferred

Hit time =Time 1 Miss penalty = Time 2 + Time 3

&

Modern Systems: Pentium Pro and PowerPC

Characteristic

Intel Pentium Pro

PowerPC 604

Cache organization Split instruction and data caches |Split intruction and data caches
Cache size 8 KB each for instructions/data {16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement |LRU replacement

Block size 32 bytes 32 bytes

White policy White-back Write-back or write-through

C@Che Terminology —

— |

A hit if the data requested by the CPU is in the upper level

Hit rate or Hit ratio
IS the fraction of accesses found in the upper level
Hit time
IS the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

A miss if the data is not found in the upper level

Miss rate or (1 — hit rate)
IS the fraction of accesses not found in the upper level
Miss penalty

IS the time required to access data in the lower level
= <lower access time>+<reload processor time>

Direct Mapped Cache

Q%P - — %]

e Direct Mapped: assign the cache location based on the
address of the word in memory

e cache_address = memory_address modulo cache_size;

Cache

000
001
010
011
100
101
110
111

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Observe there is a Many-to-1 memory to cache relationship

Direct Mapped Cache: Data Structure

There is a Many-to-1 relationship between memory and cache

How do we know whether the data in the cache corresponds
to the requested word?

tags
e contain the address information required to identify

whether a word in the cache corresponds to the
requested word.

e tags need only to contain the upper portion of the
memory address (often referred to as a page address)

valid bit
e indicates whether an entry contains a valid address

Dgect Mapped Cache: Temporal Example rloure 70

lw $1,10 110 ($0) MUESREULEE |\ $1,22($0)
lw $2,11 010 ($0) Miss: valid w $2,26($0)

lw $3,10 110 ($0) lw $3,22($0)

Index | Valid
000 N
001
010
011
100
101
110
111

Data

11 Memory[11010]

10 Memory[10110]

Z | < 1 Z2|12|12|<|Z2

Direct Mapped Cache: Worst case, always missTo' "¢

@ T e
lw $1,10 110 ($0) UEEREULE |\ $1,22($0)
lw $2,11 110 ($0) Miss: tag W $2,30($0)
lw $3,00 110 ($0) Miss: tag W $3,6($0)

Index | Valid Data
000 N

001

010

011

100

101

110

111

Direct Mapped Cache: Mips Architecture Hlgure 7.7

e = e

Tag
3 30~—-\13 12 11 ol-2-1
Byte
offset
o Data I

Index Valid Tag D ata

1021

4 Compare Tags I

Direct Mapped Cache

e Direct Mapped: assign the cache location based on the
address of the word in memory

e cache_address = memory_address % cache_size;

Cache

000
001
010
011
100
101
110
111

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Observe there is a Many-to-1 memory to cache relationship

Direct Mapped Cache: Mips Architecture Hlgure 7.7

e = e

Tag
3 30~—-\13 12 11 ol-2-1
Byte
offset
o Data I

Index Valid Tag D ata

1021

4 Compare Tags I

Bits in a Direct Mapped Cache

How many total bits are required for a direct mapped cache
with 64KB (= 216 KiloBytes) of data
and one word (=32 bit) blocks
assuming a 32 bit byte memory address?

Cache index width = log, words
=log, 21%/4 = log, 21* words = 14 bits

Block address width = <byte address width> - log, word
=32 -2 =30 bits
Tag size = <block address width> — <cache index width>
=30 - 14 = 16 bits

Cache block size = <valid size>+<tag size>+<block data size>
=1 bit + 16 bits + 32 bits = 49 bits

Total size = <Cache word size> x <Cache block size>
= 2% words x 49 bits =784 x 210 = 784 Kbits = 98 KB
=98 KB/64 KB = 1.5 times overhead

The DECStation 3100 cache

@ T el
write-through cache

Always write the data into both the
cache and memory and then wait for memory.

DECStation uses a write-through_cache
« 128 KB total cache size (=32K words)
= 64 KB instruction cache (=16K words)
* + 64 KB data cache (=16K words)

* 10 processor clock cycles to write to memory

In a gcc benchmark, 13% of the instructions are stores.

 Thus, CPIl of 1.2 becomes 1.2+13%x10 = 2.5
 Reduces the performance by more than a factor of 2!

Cache schemes

A =y

write-through cache
Always write the data into both the
cache and memory and then wait for memory.

Chip Area

write buffer
write data into cache and write buffer.
If write buffer full processor must stall.

No amount of buffering can help
If writes are being generated faster
than the memory system can accept them.

write-back cache
Write data into the cache block and
only write to memory when block is modified
but complex to implement in hardware.

Hits vs. Misses

 Read hits
[1this is what we want!

e Read misses

[Istall the CPU, fetch block from memory,
deliver to cache, and restart.

o Write hits
[Jwrite-through: can replace data in cache and memory.
[Jwrite-buffer: write data into cache and buffer.
[Jwrite-back: write the data only into the cache.

e Write misses
[lread the entire block into the cache, then write the word.

The DECStation 3100 miss rates Figure 7.9

-I-H-I
A =, &
)

* A split instruction and data cache increases the bandwidth

Why a lower miss rate?

%
Benchmark gcc | spice
Program
Instruction 6.1% | 1.2%
mIssS rate
Data 2.1% 1.ﬁ
MmIssS rate
Effective split | 5.4% | 1.2%
MmIssS rate
Combined miss | 4.8%
rate

Numerical programs
tend to consist of a lot

of small program loops

split cache has slightly
worse miss rate

Spatial Locality

« Temporal only cache
cache block contains only one word (No spatial locality).

e Spatial locality
Cache block contains multiple words.

« When a miss occurs, then fetch multiple words.

« Advantage
Hit ratio increases because there is a high

probability that the adjacent words will be
needed shortly.

e Disadvantage
Miss penalty increases with block size

Spatial Locality: 64 KB cache, 4 words Figure 7.10

 64KB cache using four-word (16-byte word)
* 16 bit tag, 12 bit mdex 2 blt block offset, 2 bit byte offset.

31 16 15 -43210

. 16 12 2 ByteO
N ~N ~N
Index Block offset
16 bits‘ 128 bits
v Tag A Data
?
— [] ?] (] 4K [
entries
v
\\16 \\32 \\32 \\32 \\32
(=
} , l\
Mux
((mux)
332

Performance Figure 7.11
7 —

» Use split caches because there is more spatial locality in
code:

Program gcc gcc | spice | spice
Block size =1 =4 =1 =4
Instruction 6.1% | 2.0% | 1.2% | 0.3%
mIssS rate
Data 2.1% | 1.7% | 1.3% | 0.6%
mIssS rate
Effective split | 5.4% | 1.9% | 1.2% | 0.4%
MmIssS rate :
Combined miss / 4.8% | 4.8%
rate

Temporal only split cache:

has slightly worse miss rate

Cache Block size Performance Figure 7.12
7 —

 Increasing the block size tends to decrease miss rate:

40%
35% |- -\
30%
=T \.\ /
20%
15% = \
10% —

-~— ‘555555555“~0‘

Miss rate

‘.7 4‘
5% - —o— ¢
*— ——
S — = <
4 16 64 256
Block size (bytes) w1 KBO
® 8 KB
® 16 KBO
® 64 KB

©® 256 KB

Designing the Memory System Figure 7.13_

« Make reading multiple words easier by using banks of
memory

CPU CPU CPU

Multiplexor
Cache
4/\\
a Bus Bus

MemoryJ] Memoryl)] MemoryJ| Memory(

Memory bank 0 bank 1 bank 2 bank 3

Memory b. Wide memory organization c. Interleaved memory organization

a.One-word-widel
memory organization
0

1-word-wide memory organization Figure 7.13
7 T e

CPU

Suppose we have a system as follows

e 1-word-wide memory organization Cache
e 1 cycle to send the address 1
e 15 cycles to access DRAM

* 1 cycle to send a word of data

Bus

Memory

If we have a cache block of 4 words
a.One-word-wide

Then the mlSS penalty |S memory organization
=(1 address send) + 4x(15 DRAM reads)+4x(1 data send)
= 65 clocks per block read

Thus the number of bytes transferred per clock cycle
=4 bytes/word x 4 words/65 clocks = 0.25 bytes/clock

Interleaved memory organization Figure 7.13
7 T e

CPU

=

Cache

Suppose we have a system as follows

e 4-bank memory Interleaving organization
e 1 cycle to send the address

’/\\
e 15 cycles to access DRAM Bus
T~ —
* 1 cycle to send a word of data wemors [stemors semors I wemory

bank 0 bank 1 bank 2 bank 3

c. Interleaved memory organization

If we have a cache block of 4 words

Then the miss penalty is
= (1 address send) + 1x(15 DRAM reads)+ 4x%(1 data send)
= 20 clocks per block read

Thus the number of bytes transferred per clock cycle
=4 bytes/word x 4 words/17 clocks = 0.80 bytes/clock
we improved from 0.25 to 0.80 bytes/clock!

Wide bus: 4-word-wide memory organization Frigure 7.13
7 T e

Suppose we have a system as follows p—

» 4-word-wide memory organization ﬁ%
1 cycle to send the address — T

e 15 cycles to access DRAM Bus
* 1 cycle to send a word of data

Memory

b. Wide memory organization

If we have a cache block of 4 words

Then the miss penalty is

= (1 address send) + 1x(15 DRAM reads)+ 1x(1 data send)
=17 clocks per block read

Thus the number of bytes transferred per clock cycle
=4 bytes/word x 4 words/17 clocks = 0.94 bytes/clock
we improved from 0.25 to 0.80 to 0.94 bytes/clock!

Memory organizations Figure 7.13

ﬁ% e
One word wide memory organization Chip Area Speed
Advantage

Easy to implement, low hardware ovefhead
Disadvantage
Slow: 0.25 bytes/clock transfer rate

Interleave memory organization

Advantage
Better: 0.80 bytes/clock transfer rate

Banks are valuable on writes: indeperidently
Disadvantage
more complex bus hardware

Wide memory organization

Advantage
Fastest: 0.94 bytes/clock transfer rat

Disadvantage
Wider bus and increase in cache access time

Decreasing miss penalty with multilevel caches page s

7 —
Suppose we have a processor with

CPI =1.0

Clock Rate =500 Mhz =2 ns

L1 Cache Miss rate = 5%

DRAM = 200 ns

How mach faster will the machine will be if we add a

L2 Cache = 20 ns (hit time = miss penalty)
L1 Cache Miss rate = 2%

L to M Miss Penalty = 200ns =100Clock Cycles

2ns per Clock Cycle

L1to L2 Miss Penalty = 20ns =10Clock Cycles

2ns per Clock Cycle

