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No-Forwarding Forwarding Hazard
R-Format 1-3 1 Data
Load 1-3 1-2 Data, Structural
Store 1 1-2 Structural

Branch 2 1 Control
(decision is made in the ID stage)

Summary: Instruction Hazards

Branch 3 1 Control
(decision is made in the EX stage)

No Delay Slot Delay Slot Hazard

Jump 2 1
Structural Hazard:  Instruction & Data memory combined.

Instruction Class Integer Application Floating-Point (FP) Application
Integer Arithmetic 50% 25%
FP-Arithmetic 0% 30%
Loads 17% 25%
Stores 8% 15%
Branches 25% 5%

Ref: http://www.sun.com/microelectronics/whitepapers/UltraSPARCtechnology/



RISC camps      [Skakem96]

[Stakem96] A Practitioner’s Guide to RISC Microprocessor Architecture, Patrick H. Stakem,
1996, John Wiley & Sons, Inc., QA 76.5.s6957, ISBN 0-471-13018-4

Stanford RISCStanford RISC
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MIPS R2000, 32-bit
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MIPS R2000, 32-bit
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MIPS R4000, 64-bit
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“Superpipelined”
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5-stage pipeline/4-issue

“Superscalar”

MIPS R8000, 64-bit
5-stage pipeline/4-issue
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MicroSPARC
5-stage pipeline

7 register windows

UltraSPARC, 64-bit
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4 instructions/cycle

Berkeley RISC
 “Register Windows”
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 SPEC-int / MHz

Emphasizes
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“Metric Demons”
 SPEC-int / MHz

Emphasizes
“cycles/instruction”

MIPS R10000, 64-bit
 6-stage integer pipeline

/ 4-issue
 “Superscalar”

MIPS R10000, 64-bit
 6-stage integer pipeline

/ 4-issue
 “Superscalar”



Instruction Level Parallelism (ILP)

Superpipelined scheme

• uses a longer pipeline with more stages to reduce cycle time

• simple dependencies: structural, data, control pipeline hazards.

• requires higher clock speeds

• require little additional logic to baseline processor

• Branches cause a latency of 3 internal clocks and loads a 2-
cycle latency.

• However, superpipelining increases performance, because each
stage can run at twice the system clock.



Instruction Level Parallelism (ILP)

•Superscalar scheme

• multiple execution units by duplicating the functional units (ALUs)

• combinatorial dependance problem

✓  instructions can only be issued only if they are independent

• require sophisticated & complex logic (i.e. instruction Scheduler)



R4400 processor

Ref: http://sunsite.ics.forth.gr/sunsite/Sun/sun_microelectronics/UltraSparc/ultra_arch_versus.html



MIPS R4400 UltraSparc I
Clock 250 MHz 167 MHz

Bus speed 50/66/75 83 Mhz
Pipeline 8-stage 9-stage
Superscalar 1-issue 4-issue
Branch prediction no yes

TLB 48 even/odd 64-Inst/64-Data
L1 I/D-cache 16k/16k 16k/16k
Associativity 1-way (direct) 2-way
L2 cache 1 Mb 0.5Mb

CMOS technology 0.35µµµµ 0.5µµµµ 4 layers
Fabrication Vendor NEC, IDT, Toshiba Fujitsu
Year 1993 1995
Voltage 3.3 volts 3.3 volts
Transistors 2.2 million 3.8-5.2 million
SpecInt92/fp92 175/178 250/350
SpecInt95/fp95 5.07/? 6.26/9.06
Cost: $1250 $1395

µµµµP Comparisons

Ref: http://sunsite.ics.forth.gr/sunsite/Sun/sun_microelectronics/UltraSparc/ultra_arch_versus.html
http://www.mips.com/Documentation/R4400_Overview.pdf

http://www.spec.org/osg/cpu95/results/res96q3/cpu95-960624-00962.html and http://www.eecs.umich.edu/~tnm/theses/mikeu.pdf



R4000: no dynamic branch prediction



Differences Between the MIPS R4400 and UltraSPARC-I

• The MIPS R4400 uses an 8-stage pipeline architecture, and is
less efficient than the superscalar, pipelined UltraSPARC-I.

• Although it is an integrated processor, the R4400 requires
several other modules in order to incorporate it into a system.

• External secondary caches (L2) must be designed around the
processor, and multiprocessor and graphics support are not
provided.

• The highly integrated UltraSPARC-I, utilizing on-chip caches, an
advanced processor design and UPA architecture, requires little to
complete its chip set, significantly easing its integration into
systems.



R4400 Bus

Ref: http://www.futuretech.vuurwerk.nl/r4k150upgrade.html

L2 cache
15ns

L2 cache
15ns

400 MB/sec peak400 MB/sec peak

267 MB/sec sustained267 MB/sec sustained



R4000 Pipeline [Heinrich93]

IF IS RF EX DF DS TC WB

Clock

Stage

Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1Phase

• IF - Instruction Fetch, first half
• IS - Instruction fetch, Second half
• RF - Register Fetch
• EX - Execution (branch compare)
• DF - Data Fetch, first half
• DS - Data fetch, Second half
• TC - Tag Check
• WB - Write Back

[Heinrich93] MIPS R4000 User’s Manual, Joseph Heinrich, Prentice-Hall, 1993, QA76.8.m523h45,
ISBN 0-13-105925-4



R4400 SuperPipeline

Clock

Stage

Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1 Φ2Φ1Phase

I-Cache

I-DEC
decode

Reg
File

I-Tag
Check

ALU

IF IS RF EX DF DS TC WB

Addr
add

D-Cache Reg
File

I-TLB
Address

Translation

D-Tag
Check

D-TLB
Address

Translation



R4000 Pipeline stages: IF & IS

IF -  instruction Fetch, First half

• PC: Branch logic selects an instruction address and

• instruction catch fetch begins

• I-TLB: instruction translation lookaside buffer begins the
virtual-to-physical address translation

IS -  instruction fetch, second half

• Complete instruction catch fetch and

• the virtual-to-physical address translation



R4000 Pipeline stages: RF

RF - register fetch

• I-DEC: instruction decoder decodes the instruction and checks
for interlock conditions

• instruction cache tag is checked against the page frame
number (PFN) obtained from the ITLB.

• Any required operands are fetched from the register file



R4000 Pipeline stages: EX

EX - execution

• Register-to-register instructions: The ALU performs arithmetic
or logical operation

• Load & Store instructions: the ALU calculates the data virtual
address (i.e. offset + base register).

• Branch instructions: The ALU determines whether the branch
condition is true & calculates the virtual target address.



R4000 Pipeline stages: DF & DS

DF - data fetch, first half
• Register-to-Register: No operations are performed during DF,
DS, and TC stages
• Load & Store instructions: The data cache fetch and the data
virtual-to-physical translation begins
• Branch instructions: address translation and TLB update
begins

DS - data fetch, second half
• Load & Store: completion of data cache fetch & data virtual-to-
physical translation. The shifter aligns data to its word or
doubleword boundary
• branch: completion of instruction address translation and TLB
update



R4000 Pipeline stages: TC & WB

TC - Tag check
• Load & Store instructions: the cache performs the tag check.
• Hit or Miss: physical address from TLB is checked against the
tag check to determine if there is a hit or miss.

WB - write back
• Register-to-register & load: the instruction result is written back
to the register file
• Branch: no operation



R10000 superscalar architecture

Ref: http://www.sgi.com/processors/r10k/tech_info/Tech_Brief.html



R10000 - superscalar

Ref: http://www.sgi.com/processors/r10k/manual/T5.HW.Ch01.intro_AFrame_16.gif



R10000 die

R10000
SPECint95 base 14.1
SPECint95 peak 14.7 SPECfp95
base 22.6
SPECfp95 peak 24.5
200 MHz Clock

I/D-cache: 32k/32k

TLB: 64 entries
Virtual Page Sizes: 16k-16M
0.35µ 4-layer CMOS technology
17 mm x18 mm chip
contains about 6.7 million
transistors
including about 4.4 million
transistors in its primary caches.

Ref: http://www.byte.com/art/9801/sec4/art4.htm



Principle of Locality

• Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

• Two types of locality
• Temporal locality (locality in time)
   If an item is referenced, then

the same item will tend to be referenced soon
   “the tendency to reuse recently accessed data items”

• Spatial locality (locality in space)
   If an item is referenced, then

nearby items will be referenced soon
  “the tendency to reference nearby data items”



Cache Example

Processor

Data are transferred

Figure 7.2

Time 1: Hit: in cacheTime 1: Hit: in cache

Time 1: MissTime 1: Miss

Time 3: deliver to CPUTime 3: deliver to CPU

Time 2: fetch from
lower level into cache
Time 2: fetch from
lower level into cache

Hit time = Time 1 Miss penalty = Time 2 + Time 3



Modern Systems: Pentium Pro and PowerPC

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through



Cache Terminology

A hit if the data requested by the CPU is in the upper level

A miss if the data is not found in the upper level

Hit rate or Hit ratio
is the fraction of accesses found in the upper level

Miss rate or (1 – hit rate)
is the fraction of accesses not found in the upper level

Hit time
is the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

Miss penalty
is the time required to access data in the lower level
= <lower access time>+<reload processor time>



Direct Mapped Cache
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• Direct Mapped:  assign the cache location based on the
         address of the word in memory

• cache_address =  memory_address modulo  cache_size;

Observe there is a Many-to-1 memory to cache relationship



Direct Mapped Cache: Data Structure

There is a Many-to-1 relationship between memory and cache

How do we know whether the data in the cache corresponds
to the requested word?

tags
    • contain the address information required to identify
      whether a word in  the cache corresponds to the
      requested word.

    • tags need only to contain the upper portion of the
      memory address (often referred to as a  page address)

valid bit
    • indicates whether an entry contains a valid address



Direct Mapped Cache: Temporal Example

lw $1,22($0)lw $1,10 110 ($0)
lw $2,26($0)lw $2,11 010 ($0)
lw $3,22($0)lw $3,10 110 ($0)

Index Valid Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Y 10 Memory[10110]

Y 11 Memory[11010]

Miss: validMiss: valid
Miss: validMiss: valid
Hit!Hit!

Figure 7.6



Direct Mapped Cache: Worst case, always miss!

lw $1,22($0)lw $1,10 110 ($0)
lw $2,30($0)lw $2,11 110 ($0)
lw $3,6($0)lw $3,00 110 ($0)

Index Valid Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Y 10 Memory[10110]Y 11 Memory[11110]

Miss: validMiss: valid
Miss: tagMiss: tag
Miss: tagMiss: tag

Figure 7.6

Y 00 Memory[00110]



d d e s s ( s o g b p o s o s )
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Direct Mapped Cache: Mips Architecture
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Compare TagsCompare Tags

Figure 7.7
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Direct Mapped Cache
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• Direct Mapped:  assign the cache location based on the
         address of the word in memory

• cache_address =  memory_address %  cache_size;

Observe there is a Many-to-1 memory to cache relationship
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Bits in a Direct Mapped Cache

How many total bits are required for a direct mapped cache
with 64KB (= 216 KiloBytes) of data
and one word (=32 bit) blocks
assuming a 32 bit byte memory address?

Cache index width = log2 words
= log2 216/4 =  log2 214 words = 14 bits

Tag size = <block address width> – <cache index width>
   = 30 – 14 = 16 bits

Block address width = <byte address width> –  log2 word
      = 32 – 2 = 30 bits

Cache block size = <valid size>+<tag size>+<block data size>
       = 1 bit + 16 bits + 32 bits = 49 bits

Total size = <Cache word size> ×××× <Cache block size>
       = 214 words ×××× 49 bits = 784 ×××× 210 = 784 Kbits = 98 KB
       = 98 KB/64 KB = 1.5 times overhead



The DECStation 3100 cache

DECStation uses a write-through cache
   • 128 KB total cache size (=32K words)
      • = 64 KB instruction cache (=16K words)
      • + 64 KB data cache (=16K words)

   • 10 processor clock cycles to write to memory

   In a gcc benchmark, 13% of the instructions are stores.

   • Thus, CPI of 1.2 becomes 1.2+13%x10 = 2.5
   • Reduces the performance by more than a factor of 2!

write-through cache
    Always write the data into both the
    cache and memory and then wait for memory.



Cache schemes

write-through cache
    Always write the data into both the
    cache and memory and then wait for memory.

write-back cache
     Write data into the cache block and
     only write to memory when block is modified
     but complex to implement in hardware.

    No amount of buffering can help
    if writes are being generated faster
    than the memory system can accept them.

write buffer
    write data into cache and write buffer.
    If write buffer full processor must stall.

Chip Area Speed



• Read hits
✓ this is what we want!

Hits vs. Misses

• Read misses
✓ stall the CPU, fetch block from memory,

deliver to cache,  and restart.

• Write hits
✓ write-through: can replace data in cache and memory.
✓ write-buffer: write data into cache and buffer.
✓ write-back: write the data only into the cache.

• Write misses
✓ read the entire block into the cache, then write the word.



The DECStation 3100 miss rates

• A split instruction and data cache increases the bandwidth

6.1%

2.1%

5.4%

Benchmark
Program

gcc

Instruction
 miss rate

Data
miss rate

Effective split
miss rate

Combined miss
rate

4.8%

spice

1.2%

1.3%

1.2%

split cache has slightly
worse miss rate
split cache has slightly
worse miss rate

Why a lower miss rate?Why a lower miss rate?

Numerical programs
tend to consist of a lot
of small program loops

Numerical programs
tend to consist of a lot
of small program loops

Figure 7.9



Spatial Locality

• Temporal only cache
        cache block contains only one word (No spatial locality).

• Spatial locality
 Cache block contains multiple words.

• When a miss occurs, then fetch multiple words.
• Advantage

Hit ratio increases because there is a high
probability that the adjacent words will be

       needed shortly.

• Disadvantage
Miss penalty increases with block size



Spatial Locality: 64 KB cache, 4 words

• 64KB cache using four-word (16-byte word)
• 16 bit tag, 12 bit index, 2 bit block offset, 2 bit byte offset.

Address (showing bit positions)

16 12 Byte�
offset

V Tag Data

Hit Data

16 32

4K�
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31      16 15           4 3 2 1 0

Figure 7.10



• Use split caches because there is more spatial locality in
code:

Performance Figure 7.11
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4.8%

spice
=1

1.2%

1.3%

1.2%

spice
=4

0.3%

0.6%

0.4%

Temporal only split cache:
has slightly worse miss rate
Temporal only split cache:
has slightly worse miss rate

Spatial split cache: has
lower miss rate
Spatial split cache: has
lower miss rate



• Increasing the block size tends to decrease miss rate:

Cache Block size Performance

1  K B �
8  K B �
1 6  K B �
6 4  K B �
2 5 6  K B

2 5 6

4 0 %

3 5 %

3 0 %

2 5 %

2 0 %

1 5 %

1 0 %

5 %

0 %

M
is

s 
ra

te

6 41 64

B lo c k  s iz e  (b y te s )

Figure 7.12



• Make reading multiple words easier by using banks of
memory

Designing the Memory System

C P U

C a ch e

B u s

M e m o ry

a . O n e - w o rd -w id e �
 m e m o ry  o rg a n iza tio n �
�

C P U

B u s

b . W id e  m e m o ry  o rg a n iz a tio n

M e m o ry

M u ltip le xo r

C a ch e

C P U

C a c h e

B u s

M e m o ry�
b a n k  1

M e m o ry �
b a n k  2

M e m o ry�
b a n k  3

M e m o ry �
b a n k  0

c . In te r le a v e d  m e m o ry  o r g a n iza tio n

Figure 7.13



1-word-wide memory organization Figure 7.13

• 1-word-wide memory organization
• 1 cycle to send the address
• 15 cycles to access DRAM
• 1 cycle to send a word of data

If we have a cache block of 4 words
Then the miss penalty is
   =(1 address send) + 4××××(15 DRAM reads)+4××××(1 data send)
   = 65 clocks per block read

Thus the number of bytes transferred per clock cycle
= 4 bytes/word x 4 words/65 clocks = 0.25 bytes/clock

C P U

C a ch e

B us

M e m ory

a . O n e - w ord -w ide
 m e m ory  o rga n iza tion

Suppose we have a system as follows



Interleaved memory organization Figure 7.13

• 4-bank memory interleaving organization
• 1 cycle to send the address
• 15 cycles to access DRAM
• 1 cycle to send a word of data

If we have a cache block of 4 words
Then the miss penalty is
   = (1 address send) + 1××××(15 DRAM reads)+ 4××××(1 data send)
   = 20 clocks per block read
Thus the number of bytes transferred per clock cycle

= 4 bytes/word x 4 words/17 clocks = 0.80 bytes/clock
we improved from 0.25 to 0.80 bytes/clock!

Suppose we have a system as follows C P U

C ache

B u s

M em o ry
b an k  1

M e m o ry
ba nk  2

M em o ry
b an k  3

M e m o ry
ba nk  0

c . In te rle ave d m e m o ry  orga niza tio n



Wide bus: 4-word-wide memory organization Figure 7.13

• 4-word-wide memory organization
• 1 cycle to send the address
• 15 cycles to access DRAM
• 1 cycle to send a word of data

If we have a cache block of 4 words
Then the miss penalty is
   = (1 address send) + 1××××(15 DRAM reads)+ 1××××(1 data send)
   = 17 clocks per block read
Thus the number of bytes transferred per clock cycle

= 4 bytes/word x 4 words/17 clocks = 0.94 bytes/clock
we improved from 0.25 to 0.80 to 0.94 bytes/clock!

Suppose we have a system as follows C P U

Bus

b. W id e m e m ory  o rga n ization

M em ory

M ultip le xo r

C a ch e



Memory organizations Figure 7.13

Wide memory organization
Advantage

Fastest: 0.94 bytes/clock transfer rate
Disadvantage

Wider bus and increase in cache access time

Interleave memory organization
Advantage

Better: 0.80 bytes/clock transfer rate
Banks are valuable on writes: independently

Disadvantage
more complex bus hardware

One word wide memory organization
Advantage

Easy to implement, low hardware overhead
Disadvantage

Slow: 0.25 bytes/clock transfer rate

Chip Area Speed



Decreasing miss penalty with multilevel caches

Suppose we have a processor with
CPI = 1.0
Clock Rate = 500 Mhz = 2 ns
L1 Cache Miss rate = 5%
DRAM = 200 ns

How mach faster will the machine will be if we add a
L2 Cache   = 20 ns (hit time = miss penalty)
L1 Cache Miss rate  = 2%

CyclesClock100
CycleClockperns2

ns200PenaltyMissMtoL ==

CyclesClock10
CycleClockperns2

ns20PenaltyMissL2toL1 ==

Page 576


