EECS 322'Com_puter Architectare = -

fmprovmg Memory Access the Car:he

Etanclks G. Wolff
wolﬂ@eecs ewru.edu
2 € ase Western Reserve nlvm
ruses powerpomt animation; please\ ieWshowt

Review: Models

7 T
Single-cycle model (non-overlapping)
 The instruction latency executes in a single cycle
e Every instruction and clock-cycle must be
stretched to the slowest instruction (p.438)

Multi-cycle model (non-overlapping)

 The instruction latency executes in multiple-cycles

 The clock-cycle must be stretched to the slowest step

» Ability to share functional units within the execution
of a single instruction

Pipeline model (overlapping, p. 522)

 The instruction latency executes in multiple-cycles

 The clock-cycle must be stretched to the slowest step

« The throughput is mainly one clock-cycle/instruction

» Gains efficiency by overlapping the execution of multiple
Instructions, increasing hardware utilization. (p. 377)

Review: Pipeline Hazards

Pipeline hazards

e Solution #1 always works (for non-realtime) applications:

stall.
Structural Hazards (i.e. fetching same memory bank)

e Solution #2: partition architecture

Control Hazards (i.e. branching)
e Solution #1: stall! but decreases throughput
e Solution #2: guess and back-track
e Solution #3: delayed decision: delay branch & fill slot

Data Hazards (i.e. register dependencies)
* Worst case situation
e Solution #2: re-order instructions
« Solution #3: forwarding or bypassing: delayed load

Review: Single-Cycle Datapath

&

2 adders: PC+4 adder, Branch/Jump offset adder

Add
4 b
e e,
Instruction
Instruction
memory

>
Add
_ Result
JRegerte @
RegDst mead ALUctl
ea
- ALUSIc
register 1 Read .
Read data 1
register 2
M Write Read
)L(J register data 2

Write

data

Branch

MemWrite

}

MemRead

i MemtoReg

Address

Ly

data

Read
data

Data

Write Meémory

Harvard Architecture: Separate instruction and data memory

Review: Multi vs. Single-cycle Processor Datapath

I e
Combine adders: add 1¥%2 Mux & 3 temp. registers, A, B, ALUOut
Combine Memory: add 1 Mux & 2 temp. registers, IR, MDR

lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSIrcA

s L.

=

0
M Instruction | Read
u Address [25-21] " | register 1
X Instruction Read Read- A
—p ° VA
| 1 Memory [20-16] t > register 2 data 1 l . >A|_U erol
MemData, [. 0 . Regis[ers ALU | ALUOU tjumm
Instruction M Write Read result
[15-0] Ilnstruction u register data 2 B 0
Write : 15— 11 X . M
ma data Instrl_Jct|on 1 Write 4 =l 1) /
register data |2
Instruction b 0 3
[15-0] M
u
X
)| Memory {1
data 16
register | Seb —
MemtoReg
ALUSrcB
Instruction [5—0]
ALUOp
>

Single-cycle=1 ALU + 2 Mem + 4 Muxes + 2 adders + OpcodeDecoders
Multi-cycle =1 ALU + 1 Mem + 5%2 Muxes + 5 Reg (IR,A,B,MDR,ALUOut) + FSM

Review: Multi-cycle Processor Datapath
ﬁ% e

Single-cycle=1 ALU + 2 Mem + 4 Muxes + 2 adders + OpcodeDecoder

Multi-cycle =1 ALU + 1 Mem + 5% Muxes + 5 Reg (IR,A,B,MDR,ALUOUt) + FSM

lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSIcA

i

0
M »| Read
u Address > register 1
i Read Read
- Memery I " | register 2 data 1
MembData 0 _ Registers o
M Write Read result
i Instruction| U register data 2
- Write x .
data Write
Instruction
[15-0]

Instruction [5— 0]

PCSrc

Figure 6.25

iy 2W 2W —
& 3 M

(7]
i
o) RegWrite
AN
o Read[] MemWrite
O —> Address register 1 | ‘
(al ReadO A
Instruction] register 2 — — Zero
memory ~ Registers Readi] > ALU aLudl read
WriteJ data 2 result Address ea
register tota
Datall
memory
WriteO
Datapath
MemRead

Registers

Instructiond
[20-16]

Instructiond
[15-11]

+ 213 FFs

+ 16 FFs

FES

213+16 = 229 additional FFs for pipeline over multi-cycle processor

Review: Overhead

Single-cycle model Chip Area
* 8 ns Clock (125 MHz), (non-overlapping)

«1 ALU + 2 adders

0 Muxes

e 0 Datapath Register bits (Flip-Flops)

Speed

Multi-cvcle model

« 2 ns Clock (500 MHz), (non-overlapping)
1 ALU + Controller

* 5 Muxes

« 160 Datapath Register bits (Flip-Flops)

Pipeline model

« 2 ns Clock (500 MHz), (overlapping)

« 2 ALU + Controller

4 Muxes

« 373 Datapath + 16 Controlpath Register bits (Flip-Flops)

Review: Data Dependencies: no forwarding

s

— %]

B ———s
Clock I E
H i

sub $2,$1,$3 | F[7|7|'> | | %M HIVE
and $12,52,$5 | i
o EHEHEHLIBHE
[N\

} ID
Stall I Stall ; Write Read
1st 2nd

Half Half

Suppose every instruction is dependant = 1 + 2 stalls = 3 clocks

MIPS = Clock = 500 Mhz =167 MIPS
CPI 3

Review: R-Format Data Dependencies: Hazard Conditions

——— ey
: e .,]
LS

1a Data Hazard (2 stalls): EX/MEM.$rd = ID/EX $rs
sub $2\$1, $3 sub $rd\$rs, $rt
and $12, $2, $5 and $rd, $rs, $rt

1b Data Hazard (2 stalls): EX/MEM.$rd = ID/EX.$rt
sub $2—%1, $3 sub $rd—%rs, %rt
and $12, $1, 7%2 and $rd, $rs, "ot

2a Data Hazard (1 stall): MEM/WB .$rd = ID/EX.$rs
sub $2, $1, $3 sub $rdy $rs, rt
and $12.\%1, $5 sub $rd, \$rs, %rt
or $13, $2, $1 and $rd, %rs, %rt

2b Data Hazard (1 stall): MEM/WB .$rd = ID/EX.$rt
sub $2s. %1, $3 sub $rds_%rs, %rt
and $12, $5 sub %$rd, $rt

or $13, $6, $2 and $rd, $rs, rt

Data Dependencies (hazard l1a and 1b): with forwarding

o -

——, %]

sub $2,$1,$3

and $12 $2,$5

1=

7
Clock I
H

I

1D

2] B g el
' |

EX M WB
I |
H ID EX M H WB
| jL |
Detected

Data Hazard 1a
ID/EX.

$rs = EX/M.$rd

Can R-Format dependencies completely be resolved by forwarding?

and
beq

$12,$2,%5
$12,$0,L7

Load Data Hazards: Hazard detection unit (page 490)

&Rl Condition —

Source Destination

IF/ID.$rs ~)
IF/ID.$rt = ID/EX.$rt A ID/EX.MemRead=1

Stall Example
lw $L\42\O($;1) lw $rt,\{frs)
and $4, $2, $5 and $rd, $rs, $rt

No Stall Example: (only need to look at next instruction)
lw $2, 20(%$1) lw &rt, addr($rs)
and $4, $1, $5 and $rd, $rs, 3rt
or $8, $2, $6 or $rd, %rs, $rt

Load Data Dependencies: with forwarding

7 —
| 5] [e]
| =

lw $2,20($1) | IF I ID EX M WB

and $4,$2,$5 F H 'Dj}'[’ LEX " H WE

Detected
Data Hazard
IF/ID.$rs = EX/M.$rt

Load dependencies cannot be completely resolved by forwarding

Even through the Load stalls the next instruction, the stall time is added
to the load instruction and not the next instruction.

Load time =1 (no dependancy) to 2 (with dependency on next instruction)

Delay slot

Before I After I

add $4,$6,$6
beg $1,$3,L7\ beq $1,$3,7
add $4,$6,$6

L7: Iw $4, 50($7) L7: lw $4, 50($7)
Can you move the add No - but a delay slot still I
Instruction into the delay requires an instruction
slot?
add $4,$6,%$6 add $4,%$6,%6
beq $1,%$4,L7 beq $1,$4,L7

add $0,%$0,%0

Branch Hazards: Soln #3, Delayed Decision

7
Clock I
H

o -

EX JRET Il Y R il s
' |

beq $1,$3,7 | IF I ID EX M I WB
Instruction was before the branch I
add $4,$6,$6 1= ID EX M H WB

T Do not need to discard instruction I
lw $4, 50($7) 1= H ID Q—H— M H WB

Decision made in ID stage: branch I

Summary: Instruction Hazards

74% No-Forwarding Forwarding
R-Format 1-3 1
Load 1-3 1-2
Store 1 1-2
No Delay Slot Delay Slot
Branch 2 1

(decision is made in the ID stage)

Branch 3 1
(decision is made in the EX stage)

Jump 2 1

Structural Hazard: Instruction & Data memory combined.

—]

Hazard

Data
Data, Structural

Structural

Hazard

Control

Control

Performance, page 504

Also known as the

neetoniency | pipeine
7«% / : p/ throughput
Instruction | Single- Multi-Cycle | Pipeline Instruction
Cycle Clocks Cycles Mix
loads 1 5 1.5 23%
(50% dependancy)
stores 1 4 1 13%
arithmetic 1 4 1 43%
branches 1 3 -1.25 19%
(25% dependancy)
jumps 1 3 2 2%
Clock 125 Mhz 500 Mhz 500 Mhz
speed 8 ns 2ns 2ns
CPI /]/ 4.02 1.18 = X Cycles*Mix
MIPS 125 MIPS 125 MIPS 424 MIPS = Clock/CPI

load-ihstruction time = 50%*(1 clock) + 50%*(2 clocks)=1.5

branch time = 75%*(1 clocks) + 25%%*(2 clocks) = 1.25

qu)elining and the cache (pesigning...,M.J.Quinn, £:7) M

—,:.lm

Instruction Pipelining is the use of pipelining to allow more
than one instruction to be in some stage of execution at the
same time.

Ferranti ATLAS (1963):
e Pipelining reduced the average time per instruction by 375%
e Memory could not keep up with the CPU, needed a cache.

Cache memory is a small, fast memory unit used as a buffer
between a processor and primary memory

Principle of Locality

* Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

e Two types of locality

« Temporal locality (locality in time)
If an item Is referenced, then

the same item will tend to be referenced soon
“the tendency to reuse recently accessed data items”

o Spatial locality (locality in space)
If an item Is referenced, then

nearby items will be referenced soon
“the tendency to reference nearby data items”

Memories Technology and Principle of Locality

&

-I-H-I
A =, &
)

« Faster Memories are more expensive per bit

« Slower Memories are usually smaller in area size per bit

Memory Typical access $ per Mbyte
Technology time
SRAM 5-25 ns $100-$250
DRAM 60-120 ns $5-%$10
Magnetic Disk | 10-20 million ns $0.10-$0.20

Mgmory Hierarchy ——e

Registers I

Pipelining I
Cache memory I
Primary real memory I

Virtual memory (Disk, swapping) I

Faster

Cheaper Cost $$$
More Capacity

Basic Cache System

& e=——

Figure 1. Basic Cache System

Processor

| t
'] }

L2 PCI Bridge :
L2 -— Main
Memor
Cach Cache y a—b{ll :

Controller Controller

1—>FEI Bus

PCIISA Bridge

[IEA Bus

ngche Terminology

o -

——, %]

A hit if the data requested by the CPU is in the upper level

Hit rate or Hit ratio
IS the fraction of accesses found in the upper level
Hit time
IS the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

A miss if the data is not found in the upper level

Miss rate or (1 — hit rate)
IS the fraction of accesses not found in the upper level
Miss penalty

IS the time required to access data in the lower level
= <lower access time>+<reload processor time>

Figure 7.2

o -
]

ngche Example

— l-:_i:i

Time 1: Hit: In cache

Processor

Time 3: deliver to CPU

I Data are transferred

Hit time =Time 1 Miss penalty = Time 2 + Time 3

Cache Memory Technology: SRAM see page B-27
e ——

——, %]

« Why use SRAM (Static Random Access Memory)?

* Speed.
The primary advantage of an SRAM over DRAM is speed.

The fastest DRAMs on the market still require 5 to 10
processor clock cycles to access the first bit of data.

SRAMs can operate at processor speeds of 250 MHz
and beyond, with access and cycle times
equal to the clock cycle used by the microprocessor

e Density.
when 64 Mb DRAMs are rolling off the production lines,
the largest SRAMs are expected to be only 16 Mb.

see reference: http://www.chips.ibm.com/products/memory/sramoperations/sramop.htmi

Cache Memory Technology: SRAM (con ~ (con’t)
@ —:I'EI

 Volatility.
Unlike DRAMs, SRAM cells do not need to be refreshed.
SRAMs are available 100% of the time for reading & writing.

e Cost.
If cost is the primary factor in a memory design,
then DRAMs win hands down.

If, on the other hand, performance is a critical factor,
then a well-designed SRAM is an effective cost
performance solution.

Cache Memory Technology: SRAM Block diagram

7 T e
Figure 2. Simplified Block Diagram of a Synchronous SRAM

A, A, .. CLKWECS ..

SRR

Addresses Control Signals

Memory Array

May be
Register —~ Data Outputs

or Latch
b obr .

Do —-
O

Data Inputs

L

Cache Memory Technology: SRAM timing diagram

@ —,:.lm

Figure 4. Reading from Memory (Flow Thru mode)

|-_I c}rnle——l
CLK oarN yooooN NS

, i’ , ; .

| |
ADDR PN VR G VR LY C Rt
|

Eetup Hnld
Chip Select e

|
|
e TN
CS or 55
= .
I

Write Enable AL
(WE) /////Setup

......

|
|
|
|
Output Enable WY
(OE) NG, |
|
|
|
|
|

Data Qutput

DQ) pao 4 bat X | D@2

Note: DQO is the data associated with Address 0 (AD). DQ1 is the data associated with Address 1 (A1).

Cache Memory Technology: SRAM 1 bit cell layout

Figure 3. IBM’s 6-Transistor Memory Cell

Circuit Diagram Cell Layout

Word Line
.-I_.-"
VDD

P1 = —EPE

Bit Line 0 - ! | v Le git Line 1
N3 N4

”‘—’j— —E‘—NE

—— GND e bl

B ELO BL1

Real transistor

—
* 3-D structure

L

f

‘l“l“'""' [

|
|rlll“l“l‘ ‘ i
.d"‘llr

.
I
(1t
111
(11
I I“

il I

E = - .,

Y R k. — T,
= = S, ~
= w - |
L7 Y I | L Y. — - |
[. W F] L T
% 1 = = i
W ———— —— e |
pl T ™ = 1
vl = = 1 5 e

e 2 REET e 4 g P

R R [

Ty AT] __

Y LT N r—— x I IT At

& LY i

i
i
1= !
f
I
s:
" I ‘I“I“I |
I
i

TR T Wi ARG

Ref: http://www.msm.cam.ac.uk/dmg/teaching/m101999/Ch8/index.htm

see page B-31

Basic DRAM design

« DRAM replaces all
but one transitors of
flip-tlop with a
capacitor

Capacitor stores
information

Transistor

i Storage
Charge leakage Capacitor

requires periodic
refreshment (sense &
rewrite)

» Increased vertical

256Mb DRAM

integration

i ilé.'f‘\.‘l"f" 1 5
L LY ||

P g O R ™y ot o
L W] T ol T T 1. W L W L W |
EBTEFAN| Filla s B o Ll T |
I |
¥
[] il ol [s Tl | =
| 111

e CiCEH

npiiginivi

2]

Memory Technology: DRAM Evolution

Same sre

IILIi.I hy -|I-|| Ii
biabit idath

wan e m i !

DRAM
evolution

(1)

. But-line contact
Storage trench
B Word line

D Strap

M tsotstion

___.__w
[1
)

U PRI,]

4_
i
:
£ |
g
¢
L

"y
e |
[

Direct Mapped Cache

Q%P - — %]

e Direct Mapped: assign the cache location based on the
address of the word in memory

e cache_address = memory_address modulo cache_size;

Cache

000
001
010
011
100
101
110
111

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Observe there is a Many-to-1 memory to cache relationship

Direct Mapped Cache: Data Structure

There is a Many-to-1 relationship between memory and cache

How do we know whether the data in the cache corresponds
to the requested word?

tags
e contain the address information required to identify

whether a word in the cache corresponds to the
requested word.

e tags need only to contain the upper portion of the
memory address (often referred to as a page address)

valid bit
e indicates whether an entry contains a valid address

Direct Mapped Cache: Temporal Example Figure 7.6

&

-I-H-I
e .,]
o

lw $1,10 110 ($0) RUEEREUCE |\ $1,22(30)
lw $2,11 010 ($0) Miss: valid w $2,26($0)
lw $3,10 110 ($0) lw $3,22($0)

Index | Valid Data

000 N

001 N

010 Y 11 Memory[11010]

011 N

100 N

101 N

110 Y 10 Memory[10110]

111 N

Direct Mapped Cache: Worst case, always missT9"®

/A e
lw $1,10 110 ($0) UEEREULE |\ $1,22($0)
lw $2,11 110 ($0) Miss: tag W $2,30($0)
lw $3,00 110 ($0) Miss: tag W $3,6($0)

Index | Valid Data
000 N

001

010

011

100

101

110

111

Direct Mapped Cache: Mips Architecture

&

Tag
3 30 eeel 3 12 11 e eZe 1
Byte

offset

10

Index Valid Tag D ata

—

Figure 7.7

Compare Tags I

Modern Systems: Pentium Pro and PowerPC

&

Characteristic

Intel Pentium Pro

PowerPC 604

Cache organization Split instruction and data caches |Split intruction and data caches
Cache size 8 KB each for instructions/data {16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement |LRU replacement

Block size 32 bytes 32 bytes

White policy White-back Write-back or write-through

