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CISC RISC

Comparison

Any instruction may reference memory Only load/store references memory

Many instructions & addressing modes Few instructions & addressing modes

Variable instruction formats Fixed instruction formats

Single register set Multiple register sets

Multi-clock cycle instructions Single-clock cycle instructions

Micro-program interprets instructions Hardware (FSM) executes instructions

Complexity is in the micro-program Complexity is in the complier

Less to no pipelining Highly pipelined

Program code size small Program code size large
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Pipelining (Designing…,M.J.Quinn, ‘87)

Instruction Pipelining is the use of pipelining to allow
more than one instruction to be in some stage of
execution at the same time.

Ferranti ATLAS (1963):
••••  Pipelining reduced the average time per instruction by 375%
••••  Memory could not keep up with the CPU, needed a cache.

Cache memory is a small, fast memory unit used as a
buffer between a processor and primary memory
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Memory Hierarchy

RegistersRegisters

PipeliningPipelining

Cache memoryCache memory

Primary real memoryPrimary real memory

Virtual  memory (Disk, swapping)Virtual  memory (Disk, swapping)

Fa
st

er

C
he

ap
er

M
or

e 
C

ap
ac

ity



EECS 322 March 27, 2000

Pipelining versus Parallelism (Designing…,M.J.Quinn, ‘87)

Most high-performance computers exhibit a great deal of
concurrency.

However, it is not desirable to call every modern computer
a parallel computer.

Pipelining and parallelism are 2 methods used to
achieve concurrency.

Pipelining increases concurrency by dividing a computation
into a number of steps.

Parallelism is the use of multiple resources to increase
concurrency.
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Pipelining is Natural!

° Laundry Example
° Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

° Washer takes 30 minutes

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

A B C D
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Sequential Laundry

° Sequential laundry takes 8 hours for 4 loads
° If they learned pipelining, how long would  laundry

take?
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Pipelined Laundry: Start work ASAP

° Pipelined laundry takes 3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C

D

A
3030 30 3030 30 30



EECS 322 March 27, 2000

Pipelining Lessons

° Pipelining doesn’t help
latency of single task, it
helps throughput of entire
workload

° Multiple tasks operating
simultaneously using
different resources

° Potential speedup =
Number pipe stages

° Pipeline rate limited by
slowest pipeline stage

° Unbalanced lengths of
pipe stages reduces
speedup

° Time to “fill” pipeline and
time to “drain” it reduces
speedup

° Stall for Dependences
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The Five Stages of Load

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode
° Exec: Calculate the memory address
° Mem: Read the data from the Data Memory
° Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Clock
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Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2
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Why Pipeline?

° Suppose we execute 100 instructions
° Single Cycle Machine

• 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns

° Multicycle Machine
• 10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns

° Ideal pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns
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Why Pipeline? Because the resources are there!
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Can pipelining get us into trouble?

° Yes:  Pipeline Hazards
• structural hazards: attempt to use the same resource two different ways at the

same time
- E.g., combined washer/dryer would be a structural hazard or folder busy

doing something else (watching TV)

• data hazards: attempt to use item before it is ready
- E.g., one sock of pair in dryer and one in washer; can’t fold until get sock

from washer through dryer
- instruction depends on result of prior instruction still in the pipeline

• control hazards: attempt to make a decision before condition is evaulated
- E.g., washing football uniforms and need to get proper detergent level; need

to see after dryer before next load in
- branch instructions

° Can always resolve hazards by waiting
• pipeline control must detect the hazard
• take action (or delay action) to resolve hazards
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Single Memory (Inst & Data) is a Structural Hazard

Mem

I
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r.
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e
r

Load

Instr 1

Instr 2

Instr 3
A

LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUReg Mem Reg

Detection is easy in this case!Detection is easy in this case!

structural hazards:
attempt to use the same resource two different ways at the same time

Resource
Mem(Inst & Data)

RegRead
RegWrite

ALU

busy
idle
idle
idle

busy
busy
idle
idle

busy
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idle
busy

busy
busy
idle
busy

busy
busy
busy
busy

idle
busy
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right half:
 highlight means read.

left half write.

right half:
 highlight means read.

left half write.

Previous example: Separate InstMem and DataMemPrevious example: Separate InstMem and DataMem
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Single Memory (Inst & Data) is a Structural Hazard
structural hazards:

attempt to use the same resource two different ways at the same time

By change the architecture from a Harvard (separate instruction and data
memory) to a von Neuman memory, we actually created a structural hazard!

Structural hazards can be avoid by changing

• hardware: design of the architecture (splitting resources)
• software:  re-order the instruction sequence
• software:  delay
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Pipelining

° Improve perfomance by increasing instruction
throughput

Ideal speedup is number of stages in the pipeline.  Do we
achieve this?
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Instruction�
fetch Reg ALU Data�

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)
4 ns

Instruction�
fetch Reg ALU Data�

access Reg
2ns

Instruction�
fetch Reg ALU Data�

access Reg

2ns

2 4 6 8 10 12 14 16

�

�

Program�
execution�
order�
(in instructions)

Figure 6.4

Stall on Branch
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Figure 6.5

Predicting branches
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Figure 6.6

Delayed branch

Instruction�
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Figure 6.7Instruction pipeline

Time
2 4 6 8 10

add $s0, $t0, $t1

�

IF ID WBEX MEM

 Pipeline stages
• IF instruction fetch (read)
• ID instruction decode

and register read (read)
• EX execute alu operation
• MEM data memory (read or write)
• WB Write back to register

 Resources
• Mem instr. & data memory
• RegRead1 register read port #1
• RegRead2 register read port #2
• RegWrite register write
• ALU alu operation
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Figure 6.8

Forwarding

add $s0, $t0, $t1

sub $t2, $s0, $t3

Program�
execution�
order�
(in instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM
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Figure 6.9

Load Forwarding

Time
2 4 6 8 10 12 14

lw $s0, 20($t1)

sub $t2, $s0, $t3

Program�
execution�
order�
(in instructions)

IF ID WBMEMEX

IF ID WBMEMEX

bubble bubble bubble bubble bubble



EECS 322 March 27, 2000

Figure 6.9

Reordering

lw $t0, 0($t1) $t0=Memory[0+$t1]

lw $t2, 4($t1) $t2=Memory[4+$t1]

sw $t2, 0($t1) Memory[0+$t1]=$t2

sw $t0, 4($t1) Memory[4+$t1]=$t0

lw $t2, 4($t1)

lw $t0, 0($y1)

sw $t2, 0($t1)

sw $t0, 4($t1)
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Basic Idea: split the datapath

° What do we need to add to actually split the datapath into
stages?
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IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back
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Graphically Representing Pipelines

° Can help with answering questions like:
• how many cycles does it take to execute this code?
• what is the ALU doing during cycle 4?
• use this representation to help understand datapaths

IM Reg DM Reg

IM Reg DM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $10, 20($1)

Program
execution
order
(in instructions)

sub $11, $2, $3

ALU

ALU
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Pipeline datapath with registers
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Load instruction fetch and decode

Figure 6.13
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Load instruction execution

Figure 6.14
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Load instruction memory and write back

Figure 6.15
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Store instruction execution

Figure 6.16
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Store instruction memory and write back

Figure 6.17

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M�
u�
x

0

1

Add

PC

0Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

ID/EX MEM/WB

Memory
sw

Address

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M�
u�
x

0

1

Add

PC

0

Address

Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

ID/EX MEM/WB

Write back
sw



EECS 322 March 27, 2000

Load instruction: corrected datapath

Figure 6.18
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Load instruction: overall usage

Figure 6.19
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Multi-clock-cycle pipeline diagram

Figure 6.20-21
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Single-cycle #1-2

Figure 6.22
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Single-cycle #3-4

Figure 6.23
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Single-cycle #5-6

Figure 6.24
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Conventional Pipelined Execution Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WBProgram Flow

Time
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Structural Hazards limit performance

° Example: if 1.3 memory accesses per instruction
and only one memory access per cycle then

• average CPI � 1.3
• otherwise resource is more than 100% utilized
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° Stall: wait until decision is clear
• Its possible to move up decision to 2nd stage by adding

hardware to check registers as being read

° Impact: 2 clock cycles per branch instruction
=> slow

Control Hazard Solutions

I
n
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O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUReg Mem RegMem
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° Predict: guess one direction then back up if wrong
• Predict not taken

° Impact: 1 clock cycles per branch instruction if
right, 2 if wrong (right - 50% of time)

° More dynamic scheme: history of 1 branch (- 90%)

Control Hazard Solutions
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Add
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Load

A
LUMem Reg Mem Reg
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LUMem Reg Mem Reg

Mem
A
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° Redefine branch behavior (takes place after next
instruction) “delayed branch”

° Impact: 0 clock cycles per branch instruction if can
find instruction to put in “slot” (- 50% of time)

° As launch more instruction per clock cycle, less useful

Control Hazard Solutions
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Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11
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• Dependencies backwards in time are hazards

Data Hazard on r1:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

Im

A
LUReg Dm Reg

A
LUIm Reg Dm Reg



EECS 322 March 27, 2000

• “Forward” result from one stage to another

• “or” OK if define read/write properly

Data Hazard Solution:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

Im

A
LUReg Dm Reg

A
LUIm Reg Dm Reg
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• Dependencies backwards in time are hazards

• Can’t solve with forwarding: 
•  Must delay/stall instruction dependent on loads

Forwarding (or Bypassing): What about Loads

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg
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Pipelining the Load Instruction

° The five independent functional units in the pipeline
datapath are:

• Instruction Memory for the Ifetch stage
• Register File’s Read ports (bus A and busB) for the Reg/Dec stage
• ALU for the Exec stage
• Data Memory for the Mem stage
• Register File’s Write port (bus W) for the Wr stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw



EECS 322 March 27, 2000

The Four Stages of R-type

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode
° Exec:

• ALU operates on the two register operands
• Update PC

° Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type
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Pipelining the R-type and Load Instruction

° We have pipeline conflict or structural hazard:
• Two instructions try to write to the register file at the same time!
• Only one write port

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ops!  We have a problem!
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Important Observation

° Each functional unit can only be used once per
instruction

° Each functional unit must be used at the same stage
for all instructions:

• Load uses Register File’s Write Port during  its 5th stage

• R-type uses Register File’s Write Port during its 4th stage

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4

° 2 ways to solve this pipeline hazard.
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Solution 1: Insert “Bubble” into the Pipeline

° Insert a “bubble” into the pipeline to prevent 2 writes
at the same cycle

• The control logic can be complex.
• Lose instruction fetch and issue opportunity.

° No instruction is started in Cycle 6!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec Wr
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Solution 2: Delay R-type’s Write by One Cycle

° Delay R-type’s register write by one cycle:
• Now R-type instructions also use Reg File’s write port at Stage 5
• Mem stage is a NOOP stage: nothing is being done.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5
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The Four Stages of Store

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch  and Instruction Decode
° Exec: Calculate the memory address
° Mem: Write the data into the Data Memory

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr
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The Three Stages of Beq

° Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

° Reg/Dec:
• Registers Fetch  and Instruction Decode

° Exec:
• compares the two register operand,
• select correct branch target address
• latch into PC

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr
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Summary: Pipelining

° What makes it easy
• all instructions are the same length
• just a few instruction formats
• memory operands appear only in loads and stores

° What makes it hard?
• structural hazards:   suppose we had only one memory
• control hazards:  need to worry about branch instructions
• data hazards:  an instruction depends on a previous instruction

° We’ll build a simple pipeline and look at these issues

° We’ll talk about modern processors and what really
makes it hard:

• exception handling
• trying to improve performance with out-of-order execution, etc.
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Summary

° Pipelining is a fundamental concept
• multiple steps using distinct resources

° Utilize capabilities of the Datapath by pipelined
instruction processing

• start next instruction while working on the current one
• limited by length of longest stage (plus fill/flush)
• detect and resolve hazards


