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Comparison

CISC

Any instruction may reference memory

Many instructions & addressing modes

Variable instruction formats
Single register set
Multi-clock cycle instructions

Micro-program interprets instructions

Complexity is in the micro-program

Less to no pipelining

Program code size small

RISC

Only load/store references memory
Few instructions & addressing modes
Fixed instruction formats

Multiple register sets

Single-clock cycle instructions

Hardware (FSM) executes instructions

Complexity is in the complier

Highly pipelined
Program code size large
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Pipelining (besigning...,M.J.Quinn, ‘87)

Instruction Pipelining Is the use of pipelining to allow
more than one instruction to be in some stage of
execution at the same time.

Cache memory is a small, fast memory unit used as a
buffer between a processor and primary memory

Ferranti ATLAS (1963):
e Pipelining reduced the average time per instruction by 375%
e Memory could not keep up with the CPU, needed a cache.
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Faster

Memory Hierarchy

Registers

Pipelining

Cache memory

Primary real memory

>
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Virtual memory (Disk, swapping)
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Pipelining versus Parallelism (besigning...,M.J.Quinn, ‘87)

Most high-performance computers exhibit a great deal of
concurrency.

However, it is not desirable to call every modern computer
a parallel computer.

Pipelining and parallelism are 2 methods used to
achieve concurrency.

Pipelining increases concurrency by dividing a computation
Into a number of steps.

Parallelism is the use of multiple resources to increase
concurrency.
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Pipelining is Natural!

° Laundry Example

> Ann, Brian, Cathy, Dave &&&5

each have one load of clothes
to wash, dry, and fold

°Washer takes 30 minutes

° Dryer takes 30 minutes

-
©)
°“Folder” takes 30 minutes
°“Stasher” takes 30 minutes Zi
to put clothes into drawers
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Sequential Laundry

6|PI\/I 7 8 9 10 11 12 1 2AM
>

I | | | | | | | | | | |
30'30'30'30'30'30'30'30'30'30'30'30'30'30'30I |

6.@j§ Time
S g5 & A
| 85 A

I °Sequential laundry takes 8 hours for 4 loads

30

< un O —
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Pipelined Laundry: Start work ASAP

6|PM 7 8 9 10 11 12 1 2AM
>

- 3030130303030 30 Time
| @ A
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Pipelining Lessons

° Pipelining doesn’t help
6 PM 7 8 o] of single task, it
| helps of entire
| Tme > workload

T |
e S tasks operatin
a 30 30 30 30 30 30 30 simultaneously Iasing J
S 2 different resources
SE A |
k , ° Potential speedup =
o ° Pipeline rate limited by
Cr)v 6 A ; pipeline stage
: ° Unbalanced lengths of
d (D’ A pipe stages reduces
e speedup
r ° Time to “fill” pipeline and
timeto “ " 1t reduces
speedup

° Stall for Dependences
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The Five Stages of Load

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycIe 5

Clock — —_ [ L L L 1

Load| Ifetch IReg/DecI EXxec I Meml Wr

° Ifetch: Instruction Fetch
e Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode
° Exec: Calculate the memory address

° Mem: Read the data from the Data Memory

°Wr: Write the data back to the register file
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RISCEE 4 Architecture

PO | (~AluZero & BZ)

O o

Clock

lorD

Instruction[7-0]

l MemRead

address

MemWrite

MDR

Clock =load value into register

ALUsrcB

RegWrite—p

Read
Data

Accumulator

Write
Data

ALUsrcA

Out

ALUop
1 X+0
2 X-Y
3 0+Y
40

5 X+Y
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Single Cycle, Multiple Cycle, vs. Pipeline

< Cycle 1 > < Cycle 2 >
Clk | _ I I

Single (?:ycle Implementation:

Load I _ Store : Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9§Cycle§ 10
o L I T I O

Multipl;? Cycle Implementation: ; ;
i Load : Store : R-type
Ifetchl Reg I Exec I Mem I Wr I Ifetchl Reg I Exec I Mem I Ifetch

Pipelinée Implementation:

Load Ifetchl Reg I EXxec I Mem I Wr

Storg] Ifetchl Reg I EXxec I Mem I Wr

R-type Ifetchl Reg I Exec I Mem I Wr
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Why Pipeline?

° Suppose we execute 100 instructions

° Single Cycle Machine
45 ns/cycle x 1 CPI x 100 inst = 4500 ns

° Multicycle Machine
10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns

° Ideal pipelined machine
e 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns
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Why Pipeline? Because the resources are there!

Time (clock cycles)

s~ N O —

WCDQ-HO

Inst O
Inst 1

Inst 2
Inst 3

Y Inst 4

Resource
Meminst
MemData
RegRead
RegWrite
ALU

Im

busy
idle
idle
idle
idle

Reg\?Vrite

busy busy busy

idle idle busy
busy busy busy
idle idle idle

idle  busy busy

busy
busy
busy
busy
busy

idle

busy
busy
busy
busy

Reg
idle  idle
busy idle
idle idle
busy busy
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Can pipelining get us into trouble?

°Yes: Pipeline Hazards

e structural hazards: attempt to use the same resource two different ways at the
same time

- E.g., combined washer/dryer would be a structural hazard or folder busy
doing something else (watching TV)

« data hazards: attempt to use item before it is ready

- E.g., one sock of pair in dryer and one in washer; can’t fold until get sock
from washer through dryer

- instruction depends on result of prior instruction still in the pipeline

« control hazards: attempt to make a decision before condition is evaulated

- E.g., washing football uniforms and need to get proper detergent level; need
to see after dryer before next load in

- branch instructions

° Can always resolve hazards by waiting
 pipeline control must detect the hazard
 take action (or delay action) to resolve hazards
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Single Memory (Inst & Data) is a Structural Hazard

structural hazards:

attempt to use the same resource two different ways at the same time

‘ Previous example: Separate InstMem and DataMem I

Load

Mem

T~ N O -

Instr 1

O [Instr 2

Instr 3

= D0 O ==

\4

+ Resource
Mem(Inst & Data) busy
RegRead idle
RegWrite idle
ALU idle

right half:
highlight means read.

left half write.

EMem?

busy
busy
idle
idle

EMem —| Reg

\Mem Regé

Detection is easy in this case!

idle idle idle

busy idle idle

busy busy busy

busy busy Idle EECS 322 March 27, 2000



Single Memory (Inst & Data) is a Structural Hazard

structural hazards:
attempt to use the same resource two different ways at the same time

By change the architecture from a Harvard (separate instruction and data
memory) to a von Neuman memory, we actually created a structural hazard!

Structural hazards can be avoid by changing

. hardware: design of the architecture (splitting resources)
. software: re-order the instruction sequence
. software: delay
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Pipelining

°Improve perfomance by increasing instruction
throughput

Program
execution
order

(in instructions)

Iw $1, 100($0)

Time

Iw $2, 200($0)

Iw $3, 300($0)

A\ 4

Program
execution

order

(in instructions)

Iw $1, 100($0)

Time

lw $2, 200($0)

Ilw $3, 300($0)

v

2 4 8 10 12 14 16 18
T T T T T T >
Instruction Data
fetch Reg ALU access Reg
< »| Instruction Data
8 ns fetch Reg ALU access Reg
< 3 »| Instruction
ns fetch
- 'R _>
8 ns
2 4 8 10 12 14
T T T T >
Instruction Data
fetch Reg ALU access Reg
Instruction Data
2ns fetch Reg ALU access Reg
<+——— ¥ Instruction Data
2ns fetch Reg ALU access Reg

— P P t+— P t———— P ¢———»

2ns

2ns

2ns

2 ns

2ns

Ideal speedup is number of stages in the pipeline. Do we
achieve this?
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Stall on Branch

Program(]
executiond
orderl]

(in instructions)

Time

add $4, $5, $6

lw $3, 300($0)

Figure 6.4

2 4 6 8 10 14 16
T T T T >
Instruction] Datal]
fetch Reg ALU access Reg
| Instruction( Reg ALU Datall Reg
2ns fetch access
Instruction(] Datall
D fetch Reg ALU access Reg
«—>
2ns
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Predicting branches

Program[J 0
execution _ 2 4 6 8 10 12 14 -
order[] Time ' ' ' ' ' g
(in instructions)
InstructionJ Datall
add $4, $5, 36 fetch Reg ALU access g
Instruction ]Reg ALU Datall Reg
2ns fetch access
Instruction(J Datall
| lw $3, 300($0) fetch | <€9 ALU access | °9
Program0J 0
execution(] . 2 4 6 8 10 12 4
order Time ! ! ! ! -
(in instructions)
add $4, $5 .$6 Instruction ]Reg ALU Datall Reg
fetch access
Instruction(J Datall
¢ > fetch Reg ALU access Reg
2ns
G
Instruction] Datal]
\ 4 fetch Reg ALU access Reg
Figure 6.5
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Delayed branch

Program(]
executionl] | 2 4 6 10 12 14
order(] Time T T T , , >
(in instructions)
Instruction(J Datal]
fetch Reg ALU access Reg
el |reo| A |25 e
(Delayed branch slot) 2 ns
Instruction(] Datal]
| lw $3, 300($0) tatch Reg| ALU access | Red
«—>
2 ns
[]

Figure 6.6
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Instruction pipeline Figure 6.7

- | 2 4 6 8 10
Time I I , >
add $s0, $t0, $t1 IF —4 ID SEX——MEM— WB
Pipeline stages Resources
e |F Instruction fetch (read) e Mem instr. & data memory
«ID  instruction decode - RegReadl  register read port #1
and register read (read) « RegRead2  register read port #2
« EX  execute alu operation « RegWrite register write
« MEM data memory (read or write) e ALU alu operation

« WB  Write back to register
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Forwarding

Program(]
execution[] 10
order] Time , >
(in instructions)

add $t0, $t1 | IF ID EX MEM \/+B
! sub $t2, $s0, $t3 IF ID PEX——MEM— WB

Figure 6.8
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Load Forwarding

_ 2 4 6 8 10 12 14

Programd  TIme ' ' ' ! >
execution]
order]
(in instructions)

lw $s0, 20($t1) IF L 1D >E MEM

ubble w ubbl
()
VL sub $t2, $s0, $t3 1= T WB

Figure 6.9
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Reordering

W
lw
SW

SW

W
lw
SW

SW

Figure 6.9

$t0, 0($t1)

St2N\A($t1)
$t2,/0($t1)
$t0, 4($t1)

$t2, 4($t1)
$t0, O($y1)
$t2, 0($t1)
$t0, 4(%$t1)

$t0=Memory[0+$t1]
$t2=Memory[4+$t1]
Memory[0+$t1]=$t2
Memory[4+$t1]=$t0



Basic ldea: split the datapath

EX: Execute/
address calculation

ID: Instruction decode/
register file read

IF: Instruction fetch MEM: Memory access 3 WB: Write back
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S ade
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° What do we need to add to actually split the datapath into
stages?
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Graphically Representing Pipelines

Time (in clock cycles) >

Program CC1 CC2 CC3 CC4 cC5 CC6
execution
order — - — —
(in instructions) S .

w$10,2061) | M F Reg S AL DM Reg

sub $11, $2, $3 M Reg > ALU DM Reg |
v A | |

° Can help with answering questions like:
« how many cycles does it take to execute this code?
« what is the ALU doing during cycle 4?
» use this representation to help understand datapaths
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Pipeline datapath with registers

MQ
ul

ERRMEv MEMWs

>Add 7] \

Add
4 / >Add result
Shift

T

left 2 /
s ReadO
PC Address § register 1 Read \
g ReadD e Zero —
Instruction = register 2 | >
memory b ~ Registers  Read[D N ALU aLup Readll
Write] data 2 result Address U | —
register MO data .
] ul] Datall 5
Write X mermory
data Lol 1 |
Write[
data
16
> >

Figure 6.12
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Figure 6.13

Iw

Instruction fetch

Load instruction fetch and decode

0
M
urj
X
1
IFID ID/EX EXIMEM MEM/WB
4 Add gyt
Shiftl
left 2
c Readl
Address = register 1 Read|]]
2 R data 1
g cad. 2 Zero —
7 £ register
nstruction® 4, L— Registers Read|] AU aLub
Sren WritelJ data 2 ° result Address Readl | L,
register mQ data M
ul Datall ul
— d\l\/me!’ x memory X
ata 11 0
Write[]
[\ data
32
SignJ
extend
| w |
0 .
v | Instruction decode |
u
X
s
IFID ID/EX EX/MEM MEM/WB
Add
4 —
Shift
left 2
< ReadU
Address £ register 1 Read
E Readl) Gt Zero —
£ register 2
Instruction[ L] " "Registers Read AU aLub
memory Write[) data 2 ° result Address Readl | L]
register Vi) data M
WriteD u Datall ul
rite X
" data L1 memory Dx
Write[]
data
. 32
Sign[|
extend
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Load instruction execution

PC

Read
data

MEM/WB

| Iw |
" | - |
M Execution
X
L
IF/ID ID/EX EX/MEM
Add
Add
4 Add result
Shift
left 2
c Read[
Address g register 1 Read[] \
p=} > >
B Readd 2 et Zero > —>
i £ register »>
In;tg:sg;)nm = ~Registers  Readl ALU aALub
Y Writel data 2 Y result Address
register M
WriteJ x / patal]
rite X
data 1 memory
WriteO
o data
16 . 32
\ SignO|_\
N lextend [ N

Figure 6.14

ML
u]
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Load instruction memory and

Figure 6.15

write back

Iw |
0
M | Memory
u
X
[—> 1
IFID ID/EX EX/MEM MEM/WB
Add
> Addl
4 Add resit
Shift.
left 2
s Readll
| PC! Address = register 1 R
S eadll__|
% Readll data 1 Zero L,
InstructionC] = register 2
memory =~ Registers Readl | N ALU  aLup -
Write[] data 2 result Address eadtl 7
register Mo Datadl data v
u
ul
— Write[J % memory u
data |1 )
Write[]
data
32
Sign(J!
extend
o Iw
u .
u Write back
e
IFID ID/EX EXIMEM MEM/WB
Add
Add
4 Add esul
Shift
left 2
H Readl)
Address =1 register 1 R
8 ead!
3 | p—
B Read(] 2 data 1 Zero L,
= register
Instructionl .
memory = — __Registers  Read L. ALU ALup Read
WriteQl data 2 g result Address cadll_ |
register MmO Datar] data i
u
Write] X memory d
data |1
Write[)
data
32
SignCJ
extend
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Store instruction execution

| SwW |
1 | Execution |
(]
IF/ID ID/EX EX/MEM MEM/WB
>Add
- Add
’ >Add result
Shift
left 2
5 ReadO
—>| PC Address 2 register 1 Read
=}
3 Read[ data 1
i = ister 2 N I
Instruction(d = regis )
memory i __Registers Readl rendh
Write[J data 2 Address dea I f
register _— in — 2
Write memory ul]
data 5(
| Write[l
data
16
A
A}

Figure 6.16
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Store instruction memory and wri

Figure 6.17

te back

I Sw |
0 | |
M Memory
u
X
[—> 1
IFID ID/EX EX/MEM MEM/WB
dd
4 —
s Readll
| PC! Address § register 1 Read
Z Read[] data 1
i = ter 2 >
Instruction(] = regis
memory = — Registers Read| Readh
Writel data 2 Address |  —(1
register data M
Wiiter: Datar] ul
—>| e memol
data i Ox
Write(l
data
32
Sign(J!
extend
sw
"
M K
u Write back
X
s
IFID ID/EX EX/MEM MEM/WB
Add
4 —
c Readll
Address % register 1 Read
g e 2 e Zero —
= register
Instructionl ] Registers Read AU b
memory WriteOl data 2 " I result Address Readl | L__ A
register data
Datall 'i/ll
Write[J memory
data - X
Write)
data
32
SignL|
extend
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Load instruction: corrected datapath

= PC

Readl

MEM/WB

data

Oxczl—‘

0
MO
uf]
X
1
IF/ID ID/EX EX/MEM
>add \]
Add
4 / >Add result
Shift
left 2
c Readd
2 register 1
Address 5 g Read[] \
=} » »
ﬁ Readr] 2 deta Zero > —>
i < register >
Instructiond N Registers Readl ALU b
memory data 2 i/l result Address
u Datal]
WriteO X memory
data 1
Write[l
" data
16 . 32
\ SignO| \
N Tlextend [ N

Figure 6.18
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Load instruction: overall usage

= PC

mQ
ul

y

IF/ID ID/EX
Add
4 ey
Shift
left 2
c Readl
Address -% register 1 Readl
% ReadD data 1
Instructiond £ register 2
= Registers Readl
memory Write[ data 2 0
register M
u
WriteO X
data —{1
16 ) 32
\ Sign| \
\ Tlextend [ M

Figure 6.19

EX/MEM
AddD
Zero £ >
ALU - ALup
result Address
Datall
memory
Write
v data

Read
data

MEM/WB
j—» e
ML
ul]
X
0
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Multi-clock-cycle pipeline diagram

\ 4

Time (in clock cycles)

ProgramUJ cc1 CC 2 cC 3 CC 4 cCs cCe6
executionl]
orderd — — — —
(in instructions)
lw $10, 20($1) | M [ Reg ALU DM Reg
sub $11, $2, $3 IM [l Reg > ALU DM Reg
v |
Programb] Time (in clock cycles) >
executiond
orderld CC1 CC?2 CC3 CC4 CC 5 CC6
(in instructions)
Instruction Instructiond E : Datall :
I[%v $10, $20(31)0 fetch decode xecution access Write back
O Instructiond |  Instructiond . Datal] .
sub $11, $2, $3 nsfélthhlon ngerggd'gn Execution aCCess Write back

Figure 6.20-21
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| Iw$10, 20(31)

Single-cycle #1-2 ==

Figure 6.22

IFID ID/EX E)i‘M—EM MEM
4
s Readl]
PC Address 5 register 1 Readh
—_—
Bp—fren, 2o L
InstructionC) =
o N [ — Registers Readl .5 AU ALup Readl:
Write[l data 2 result Address Read | 1
register MO ata M
u Datall
Write[ X memory ;'
data bl 1 o
Write[]
/\ data
32
Sign[J
@
Clock 1 T T T
| subs$ll, $2,$3 lw $10, 20($1)
| Instruction fetch Instruction decode
0
M
urf
X
i
IF/ID ID/EX EX/MEM MEM
—— —— —L —l
Add
4 Add result
Shift
left 2
H ReadU
PC Address k= register 1 Readl]
E Readl) data 1
i £ register 2 Zero —
In;t;;t]:gonD = — Registers Read[) ALU ALup
&4 WriteD) data 2 {° resul Address Readl | fl
register MO ata M
u Datall
Write(] X memory "
data |1 0
Writel]
data
. 32
Sign)|
extend
Clock 2 T a5 . L
I ]
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Single-cycle #3-4

Figure 6.23

sub $11, $2, $3

| Iw$10, 20($1)

Instruction decode ! Execution
0
M
u
X
[—b 1
IF/ID ID/EX EX/IMEM MEM/WB
— —L— —— —L
dd
Add
4 Add result
Shiftl
left 2
Read(
Address register 1 Readl
ReadD] data 1 L,
Instruction() register 2
memory — — Registers Read| ]_» Readl
Writel] data 2 Address eadil | (1
register data md
WriteD Datar] ul
rite
| data memory 5(
Write[l
/\ data
32
Sign[J
@
Clock 3 —l
I ] ]
- | sub$11,$2,$3 |  Iw$10,20($1) |
v l Execution l Memory l
X
s |
IF/ID ID/EX EX/IMEM MEM/WB
—— — — ——
dd
Add
4 result
Shiftl
left 2
B Readll
Address g register 1 Readl]
2 lata 1
@ 12?3; 2 Zero >
Instruction] Ll = Registers Readl] AU AUl
memory Writel) data 2 result Address Read | 1
register data vl
Datall u
Write[)
data memory M
Write(l o
[\ data
32
Sign(J
@
Clock 4 T T_l
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Single-cycle #5-6

Figure 6.24

sub $11, $2, $3

| Iw $10, 20($1) |

0
M z
u ! Memory ! Wiite back l
X
s ‘
IF/ID ID/EX EX/IMEM MEM/WB
—L —L — ——
Add
Add
4 Add osult
Shift!
left 2
s Read[]
Address = register 1
E dmas
5 Read[] Zero L,
= register 2
InstructionC] =] E— __Registers Read ALU  ALUp
memory Writel] data 2 {0 result Address Read 1
register M data il
Writel x e m
data |1 v 0
Write[l
data
32
Sign[J
@
Clocks T T T ]
I ! !
0 sub $11, $2, $3
AUA Write back
X
r 1
IF/ID ID/EX EX/MEM MEM/WB
—L —L — —
Add
Add
4 Add osult
Shift!
left 2
B Read[]
Address 8 register 1 Read
g datzal
g R 2 Zero —
£ register
Instructiont) =  — __Registers Read ALU  ALup
memory Writel) data 2 10 result Address Read —s(1
register M data il
Writel x Datal! i
data L, memory l;(
Write[l
data
16 32
Sign[J
@
Clock 6 ah s 1
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Conventional Pipelined Execution Representation

Time

IFetchIDcd IExec IMem IWB

IFetChIDcd IExec II\/Iem IWB

IFetchIDcd IExec II\/Iem IWB

IFetchIDcd IExec II\/Iem IWB

IFetchIDcd IExec IMem IWB

v Program Flow

IFetchIDcd IExec IMem IWB




Structural Hazards limit performance

° Example: if 1.3 memory accesses per instruction
and only one memory access per cycle then

e average CPI U 1.3
e otherwise resource is more than 100% utilized
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Control Hazard Solutions

s~ N O —

= D0 O ==

° Stall: wait until decision is clear
 |ts possible to move up decision to 2nd stage by adding

hardware to check registers as being read

Add
Beg
Load

\4

=> s|low

Mem

Reg [

Mem

° Impact: 2 clock cycles per branch instruction

: Mem

Time (clock cycles)

EMemE

Reg
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Control Hazard Solutions

° Predict: guess one direction then back up if wrong
* Predict not taken

Time (clock cycles)

Add gl
5%5

Beq Mem.f RI—_Q m Reg

Mem ..[ Reg

s~ N O —

= D0 O ==

\4

°Impact: 1 clock cycles per branch instruction if
right, 2 if wrong (right - 50% of time)

° More dynamic scheme: history of 1 branch (- 90%)
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Control Hazard Solutions

° Redefine branch behavior (takes place after next
Instruction) “delayed branch”

Time (clock cycles)

Mem

Add

M|SC Mem.?: Reg

s~ N O —

HReg !

L oad M MemE_Regé
v . . . . H

C
°Impact: O clock cycles per brancﬁ Instruction if can
find instruction to put in “slot” (- 50% of time)

= D0 O ==

° As launch more instruction per clock cycle, less useful
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Data Hazard on rl

add rl ,r2,r3
sub r4,rl ,r3
and r6, rl ,r7
or r8,rl1,r9
xor r10, rl ,r11



Data Hazard on r1l:

e Dependencies backwards in time are hazards

Time (clock cycles)
IF_: ID/RE >X§ MEM WB
add r1,r2,r3 | 'm -[Reg_gg om iR

sub r4,r1,r3 |'m

s~ N O —

and ro6,rl,r7

or r8,ri,r9

-HCDQ-HO

xor rl0,r1,r1l il;(DmlReg

\4
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Data Hazard Solution:

e “Forward” result from one stage to another

Time (clock cycles)
IF_ i ID/R

i

. |add r1,r2,r3 | m fRe[:

° sub r4,r1,r3 1

" land r6,r1,r7

.

Y lor r8,r1,r9 {Reg]:
ryxorrl0,ri,ril D 'ré Reg

“or” OK if define read/write properly
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Forwarding (or Bypassing): What about Loads

e Dependencies backwards in time are hazards

Time (clock cycles)

E |D/R£:_§_>§x§ VEM W8
lwrl,0(r2) |'m -;EReg a d

subrarird ™ HR

Hom [ Regl:

\4

e Can’t solve with forwérding:
* Must delay/stall instruction dependent on loads
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Pipelining the Load Instruction

. Cycle 1iCycle 2 | Cycle3; Cycle4 { Cycle5 i Cycle6  Cycle7

Clock | | | | | | | I

1st lw| Ifetch IReg/DecI Exec I Meml Wr

2nd lw| Ifetch IReg/DecI Exec I Meml Wr

3rd lw| Ifetch IReg/DecI Exec I Meml Wr

°The five independent functional units in the pipeline
datapath are:

* Instruction Memory for the Ifetch stage

Register File’s Read ports (bus A and busB) for the Reg/Dec stage
ALU for the Exec stage

Data Memory for the Mem stage

Register File’s Write port (bus W) for the Wr stage
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The Four Stages of R-type

Cycle 1 Cycle 2 Cycle 3 Cycle 4

I I I LI 1

R-type| Ifetch IReg/DecI EXxec I Wr

° Ifetch: Instruction Fetch
e Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode

° Exec:
 ALU operates on the two register operands
 Update PC

°>Wr: Write the ALU output back to the register file
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Pipelining the R-type and Load Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycIeS ECycIeG ECycIe? ECycIe8 ECycIe9
Clock | | | | | | | | I I

R-type| Ifetch IReg/DecI Exec I Wr : Ops! \€Ve have agproblemlg

R-type | _Ifetch IReg/DecI EXxec I Wr | /J\

Load | Ifetch IReg/DecI EXxec I Mem LWr

Wr

R-type| Ifetch IReg/DecI EXxec

R-type| Ifetch IReg/DecI Exec I Wr

°We have pipeline conflict or structural hazard:
 Two instructions try to write to the register file at the same time!
 Only one write port
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Important Observation

> Each functional unit can only be used once per
iInstruction

> Each functional unit must be used at the same stage
for all instructions:

» Load uses Register File’s Write Port during its 5th stage

1 2 3 4 5
Load |_Ifetch IReg/DecI EXxec I Meml Wr

 R-type uses Register File’s Write Port during its stage

1 2 3 4
R-type| Ifetch IReg/DecI EXxec I Wr

° 2 ways to solve this pipeline hazard.
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Solution 1: Insert “Bubble” into the Pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 SCycIeS SCycIeG SCycIeY SCycIeB SCycIe9
Clock | | | | | | | | I
Ifetch IReg/DecI EXxec I Wr

Load |_Ifetch IReg/DecI EXxec I Mem I Wr
Ifetch IReg/DecI EXxec Wr
Ifetch IReg/Dec Pipeline) Exec I Wr

R-type| Ifetch |\ Bubble Reg/DecI Exec I Wr
Ifetch IReg/DecI Exec

°Insert a “bubble” into the pipeline to prevent 2 writes
at the same cycle

 The control logic can be complex.
* Lose instruction fetch and issue opportunity.

R-type

R-type

° No instruction is started in Cycle 6!
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Solution 2: Delay R-type’s Write by One Cycle

° Delay R-type’s register write by one cycle:
* Now R-type instructions also use Reg File’s write port at Stage 5

« Mem stage is a NOOP stage: nothing is being done.
1 2 3 _ 4 _ 5
R-type| Ifetch IReg/DecI EXxec [ Mem ] Wr

: Cycle1iCycle2 | Cycle3iCycle4 i Cycle5 ; Cycle 6 { Cycle7 ; Cycle8 i Cycle :

Clock | | | | | | | | LI

R-type| Ifetch IReg/DecI EXxec I I\/Ieml Wr

R-type | _Ifetch IReg/DecI EXxec I I\/Ieml Wr

Load |_Ifetch IReg/DecI EXxec I Meml Wr

R-type| Ifetch IReg/DecI EXxec I I\/Ieml Wr

R-type| Ifetch IReg/DecI Exec I I\/Ieml Wr
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The Four Stages of Store

Cycle 1 Cycle 2 Cycle 3 Cycle 4

I I I LI 1

Store |_lIfetch IReg/DecI EXxec I Meml Wr

° Ifetch: Instruction Fetch
e Fetch the instruction from the Instruction Memory

° Reg/Dec: Registers Fetch and Instruction Decode

° Exec: Calculate the memory address

° Mem: Write the data into the Data Memory
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The Three Stages of Beq

Cycle 1 Cycle 2 Cycle 3 Cycle 4

—

Beq|_lfetch IReg/DecI EXxec I Meml Wr

°Ifetch: Instruction Fetch

e Fetch the instruction from the Instruction Memory

° Reg/Dec:

* Registers Fetch and Instruction Decode

° Exec:

e compares the two register operand,
» select correct branch target address

e latch into PC
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Summary: Pipelining

°What makes it easy
« all instructions are the same length
e just a few instruction formats
e memory operands appear only in loads and stores

°What makes it hard?

o structural hazards: suppose we had only one memory
e control hazards: need to worry about branch instructions
o data hazards: an instruction depends on a previous instruction

°>We'll build a simple pipeline and look at these issues

°We'll talk about modern processors and what really
makes it hard:

» exception handling
e trying to improve performance with out-of-order execution, etc.
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Summary

° Pipelining is a fundamental concept
 multiple steps using distinct resources

° Utilize capabilities of the Datapath by pipelined
Instruction processing

« start next instruction while working on the current one
 limited by length of longest stage (plus fill/flush)
e detect and resolve hazards
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