
CWRU EECS 322 1

Language of the Machine

I speak
 Spanish to God,
Italian to women,
French to men,

and German to my Horse.

Charles V, King of France
1337-1380

I speak
 Spanish to God,
Italian to women,
French to men,

and German to my Horse.

Charles V, King of France
1337-1380

EECS 322 Computer Architecture

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

CWRU EECS 322 2

• 100 million processors100 million processors
were sold for desktop computers

• 3 BILLION processors3 BILLION processors
were sold for embedded systems

Computer Architecture Trends: Post PC era

CWRU EECS 322 3

$66 Billion by 2004Embedded Systems Market WorthEmbedded Systems Market Worth

It’s expected that the average
car will be Internet ready and
have over $2000 worth of
embedded computers

Internet AppliancesInternet Appliances will grow by more than 1500%
between now and the end of 2004. That translates into
some 37 million devices shipping in 2004.

This market includes TV-based Internet access
devices, web phones, and other terminals that use
wires to connect to the web.

Consumer Markets: Processor trends

CWRU EECS 322 4

Bionics:

Sensors in latex fingers
instantly register hot
and cold, and an
electronic interface in his
artificial limb stimulates
the nerve endings in his
upper arm, which then
pass the information to his
brain.

The $3,000 system allows
his hand to feel pressure
and weight, so for the first
time since losing his arms
in a 1986 accident, he can
pick up a can of soda
without crushing it or
having it slip through his
fingers. One Digital Day

Medical Markets: Biotechnology

CWRU EECS 322 5

Computer designers must
be experienced:
• in both hardware and
software co-design,
• as well as in embedded
applications,
• be familiar with
optimization techniques to
perform the specific
program using the least
size, power, and time.

Future PC Design: System-on-a-Chip

How do we design such large systems….

12 million logic gates can now be placed on a single chip

CWRU EECS 322 6

Design Abstractions

I/O systemProcessor

Compiler
Operating

System
(Linux)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
 Architecture

• Coordination of many levels of abstraction

Datapath & Control

transistors

MemoryHardware

Software Assembler

CWRU EECS 322 7

Design Abstractions

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g. MIPS)

Machine Language
Program (MIPS)

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $to, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg[9:11] & MASK

An abstraction omits unneeded detail,
helps us cope with complexity

An abstraction omits unneeded detail,
helps us cope with complexity

CWRU EECS 322 8

Instruction Set Architecture

A very important abstraction: Instruction Set Architecture
• interface between hardware and low-level software

• standardizes instructions, machine language bit patterns, ...

• advantage: different implementations of the same architectur

• disadvantage: sometimes prevents using new innovations

 True or False: Binary compatibility is important? True or False: Binary compatibility is important?

 Modern instruction set architectures:
 80x86/Pentium/K6, PowerPC, DEC Alpha, MIPS, SPARC, HP

Yes (Microsoft/Intel alliance) No - (Unix, Linux, C++, Java)

Yes - Sales, Marketing No - Speed, Engineers, Programmers

CWRU EECS 322 9

Example: Digital Pager Architecture

Two completely differently optimized
Instruction Set Architectures

Two completely differently optimized
Instruction Set Architectures

Why not just use an Intel Pentium instead?Why not just use an Intel Pentium instead?

Cost,
size,
power,
speed,
weight,
...

Cost,
size,
power,
speed,
weight,
...

CWRU EECS 322 10

I speak

Hundreds of years later,
and IEEE/ABET accreditation,

this course has evolved as follows:

Course Overview

C++ to my Compiler,

Machine Instructions to Assemblers,

Datapath Design to Digital Logic Gates,

and German to my Horse.

Software

Hardware

Performance Issues

CWRU EECS 322 11

Smart cards differ from credit
cards in using onboard memory
chips and microprocessors or
micro-controllers instead of
magnetic strips.

• Each chip can hold 100 times the
information contained on a
standard magnetic-stripe card.

• Smart cards make personal and
business data available only to the
appropriate users.

Smart Cards: Hardware/Software Co-Design

• There are currently
2.8 billion smart
cards in use:

• 575 million phone,
36 million financial,
30 million ID cards,
17 million pay TV, …

Smart Cards

CWRU EECS 322 12

Smart cards have
embedded within them a
processor and often a
cryptographically
enhanced co-processor.

Today's smart card
hardware controller
typically includes an 8-
bit CPU (such as the
Motorola 68HC05), 780
bytes of RAM, 20 KB of
ROM, 16 KB of EEPROM
on a single die, and
(optionally) an on-chip
hardware encryption
module.

Smart Cards: Computer Architecture

CWRU EECS 322 13

An example of the software handshaking protocol is shown below

Smart Cards: Hardware/Software Co-Design

CWRU EECS 322 14

Course Textbook

Textbook:
Computer Organization and Design
“The Hardware/Software Interface”

2nd edition
John L. Hennessy & Patterson
Morgan Kaufmann Publishers
ISBN = 1-55860-428-6
http://www.mkp.com

Homeworks , exams, lecture material are
heavily based on the textbook!

Avoiding it will be hard

CWRU EECS 322 15

Course Instructor

Office: Olin Building Room 514
Phone: 1-216-368-5038

Preferred form of communication
email: wolff@eecs.cwru.edu

Course Website:
http://bear.ces.cwru.edu/eecs_322
http://129.22.150.65/eecs_322

Office hours: generally before & after class

Instructor:Frank Wolff

CWRU EECS 322 16

Course Graders / Teaching Assistants

Primary Grader: Ramakrishnan Vijayakumar

Office: Olin 413, Embedded Systems Lab
Phone: TBA

Preferred form of communication
email: rxv20@po.cwru.edu

Office hours: TBA

Priority: Graders/TAs then Instructor

CWRU EECS 322 17

Course Grading

Exams = Projects = 25% each

February 12: Chapters 3,2,1
March 7: Chapter 4
April 4: Chapter 5-6
April 30: Chapter 6-7-8

Total: 4 exams and 1 programming project

Tentative Exam dates:
(disclaimer: subject to change in time/topics)
1 week advanced confirmation notice

Homeworks assigned for next class day

CWRU EECS 322 18

Course Schedule

Class: Monday & Wednesday 4:30-5:45pm

Last Class Day: April 30 (Last Exam)

Spring Break: March 12 - 16

First Class Day: January 17

Get Unix & NT accounts

CWRU EECS 322 19

Course Outline

1. Introduction

2. Instruction Set Design

3. Computer System Design

4. Data Path Design

5. Instruction Sequencing and Control

6. Pipeline Design

7. Memory Systems

8. Input - Output and Communications

CWRU EECS 322 20

Course Outline Concepts (1-3)

1. Introduction: Introduction to architecture. Turing
machine computational model. Basic principles of
machine design. Computer evolution. Technology
impact on architecture.

2. Instruction Set Design: Instruction set architecture.
Cost and performance measurements. Classification of
instruction sets. Example of instruction set macines.
Quantitative comparisons. Reduced Instruction set
design (RISC).

3. Computer System Design: Computer design
methodology. Design Levels. Review of gate-level
design. Register level components and design. Design
CAD systems.

CWRU EECS 322 21

Course Outline Concepts (4-6)

4. Data Path Design: Basic processor datapath design.
Design of Arithmetic Logic Unit (ALU). Design of Fast
ALUs. Multipliers and Dividers. Floating Point Units.

5. Instruction Sequencing & Control: Instruction control
steps & sequencing. State machine controllers.
Hardwaired control. Microprogrammed control. PLA
controllers. Microsequencers. Examples.

6. Pipeline Design: Fundamental principles. Arithmetic
structures. Instruction pipeline techniques. RISC
instruction pipelines. Pipeline sequencing & control.
Floating-point pipelines.

CWRU EECS 322 22

Course Outline Concepts (7-8)

7. Memory Systems: Memory technologies. RAM
design. Memory hierarchies. Cache memories. Memory
allocation techniques & memory management.

8. Input - Output and Communications: Communication
methods. Bus control and timing. More about buses.
Interrupts and DMA.

CWRU EECS 322 23

C Operators/Operands

• Arithmetic operators: +, -, *, /, % (mod)

• Assignment statements: Variable = expression;
celsius = 5 * (fahr - 32) / 9;

• Operands:

Variables: lower, upper, fahr, celsius
Constants: e.g., 0, 1000, -17, 15

• In C (and most High Level Languages) variables
declared 1st and given a data type

–Example:
int celsius; /* declare celsius as an integer */
int a, b, c, d, e;

Note: we begin at chapter 3 of the text book

CWRU EECS 322 24

Assembly Operators

• Syntax of Assembly Operator

1) operation by name

2) operand getting result

3) 1st operand for operation

4) 2nd operand for operation

• Example
 add b to c and put the result in a: add a, b, c

–Called an (assembly language) Instruction

• Equivalent assignment statement in C:

a = b + c;

CWRU EECS 322 25

Assembly Operators/Instructions

• MIPS Assembly Syntax is rigid:
1 operation, 3 variables

Why? Keep Hardware simple via regularity

Note: Unlike C each line of assembly contains

at most 1 instruction

• How do following C statement?
 a = b + c + d - e;

• Break into multiple instructions
add a, b, c # a = sum of b & c
add a, a, d # a = sum of b,c,d
sub a, a, e # a = b+c+d-e

• # is a comment terminated by end of the line

• /* comment */ is a C comments & can span many lines

CWRU EECS 322 26

Compilation

• Example: compile by hand this C code:
f = (g + h) - (i + j);

• First sum of g and h. Where put result?
add f,g,h # f contains g+h

• Now sum of i and j. Where put result?

–Cannot use f !

–Compiler creates temporary variable to hold
sum: t1
add t1,i,j # t1 contains i+j

• Finally produce difference
sub f,f,t1 # f=(g+h)-(i+j)

CWRU EECS 322 27

Compilation Summary

• C statement (5 operands, 3 operators):
f = (g + h) - (i + j);

• Becomes 3 assembly instructions
(6 unique operands, 3 operators):

add f,g,h # f contains g+h
add t1,i,j # t1 contains i+j
sub f,f,t1 # f=(g+h)-(i+j)

• Big Idea: compiler translates notation from 1 level of abstraction to
lower level

• In general, each line of C produces many assembly instructions

–One reason why people program in C vs.
Assembly; fewer lines of code

–Other reasons? Portability, Optimization

CWRU EECS 322 28

Registers

• Unlike C++, assembly instructions cannot use
variables

Why not? Keep Hardware Simple

• Instruction operands are registers:
 limited number of special locations;
 32 registers in MIPS (r0 - r31)

Why 32? Smaller is faster

• Each MIPS register is 32 bits wide
Groups of 32 bits called a word in MIPS

clk

b0b31

•••

•••

•••

CWRU EECS 322 29

Assembly Operands: Registers

• Naming of 32 registers:
 instead of $r0, $r1, …, $r31, use

 $s0, $s1, … for registers corresponding to
 C variables

$t0, $t1, … for registers corresponding to
 temporary variables

 Will explain mapping convention later of $s0, $s1,
… , $t0, $t1, … , to $r0, $r1, …

• Note: whereas C declares its operands, Assembly
operands (registers) are fixed and not declared

CWRU EECS 322 30

Compilation using Registers

• Compile by hand using registers:

f = (g + h) - (i + j);
assign registers
#int f: $s0, int g: $s1, int h: $s2,

 #int i: $s3, int j: $s4

• MIPS Instructions:

add $s0,$s1,$s2 # $s0 = g+h

add $t1,$s3,$s4 # $t1 = i+j

sub $s0,$s0,$t1 # f=(g+h)-(i+j)

