
EECS 322 Computer Architecture

Improving Memory Access 2/3

 The Cache and Virtual Memory

The Art of Memory System Design

Processor

$

MEM

Memory

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization
to minimize the average memory access time
for typical workloads

Workload or
Benchmark
programs

Principle of Locality

• Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

• Two types of locality

• Temporal locality (locality in time)
 If an item is referenced, then

the same item will tend to be referenced soon
 “the tendency to reuse recently accessed data items”

• Spatial locality (locality in space)
 If an item is referenced, then

nearby items will be referenced soon
 “the tendency to reference nearby data items”

Memory Hierarchy of a Modern Computer System

• By taking advantage of the principle of locality:

–Present the user with as much memory as is
available in the cheapest technology.

–Provide access at the speed offered by the fastest
technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n

-C
h

ip
C

ach
e

1s 10,000,000s
 (10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage
(Disk)

10,000,000,000s
 (10s sec)

Ts

• By taking advantage of the principle of locality:

–Present the user with as much memory as is available in
the cheapest technology.

–Provide access at the speed offered by the fastest
technology.

Memory Hierarchy of a Modern Computer System

• DRAM is slow but cheap and dense:

–Good choice for presenting the user with a BIG memory
system

• SRAM is fast but expensive and not very dense:

–Good choice for providing the user FAST access time.

Spatial Locality

• Temporal only cache
 cache block contains only one word (No spatial locality).

• Spatial locality
 Cache block contains multiple words.

• When a miss occurs, then fetch multiple words.

• Advantage
Hit ratio increases because there is a high
probability that the adjacent words will be

 needed shortly.

• Disadvantage
Miss penalty increases with block size

(g p)

2 0 1 0

B y t e �
o f f s e t

V a l i d T a g D a t aI n d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0
TagTag IndexIndex

Direct Mapped Cache: Mips Architecture

DataData

Compare TagsCompare Tags

Figure 7.7

HitHit

Cache schemes

write-through cache
 Always write the data into both the
 cache and memory and then wait for memory.

write-back cache
 Write data into the cache block and
 only write to memory when block is modified
 but complex to implement in hardware.

 No amount of buffering can help
 if writes are being generated faster
 than the memory system can accept them.

write buffer
 write data into cache and write buffer.
 If write buffer full processor must stall.

Chip Area Speed

Spatial Locality: 64 KB cache, 4 words

• 64KB cache using four-word (16-byte word)
• 16 bit tag, 12 bit index, 2 bit block offset, 2 bit byte offset.

Address (showing bit positions)

16 12 Byte�
offset

V Tag Data

Hit Data

16 32

4K�
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 3 2 1 0

Figure 7.10

• Make reading multiple words easier by using banks of
memory

Designing the Memory System

C P U

C a ch e

B u s

M e m o ry

a . O n e - w o rd -w id e �
 m e m o ry o rg a n iza tio n �
�

C P U

B u s

b . W id e m e m o ry o rg a n iz a tio n

M e m o ry

M u ltip le xo r

C a ch e

C P U

C a c h e

B u s

M e m o ry�
b a n k 1

M e m o ry �
b a n k 2

M e m o ry�
b a n k 3

M e m o ry �
b a n k 0

c . In te r le a v e d m e m o ry o r g a n iza tio n

Figure 7.13

Memory organizations Figure 7.13

Wide memory organization
Advantage

Fastest: 0.94 bytes/clock transfer rate
Disadvantage

Wider bus and increase in cache access time

Interleave memory organization
Advantage

Better: 0.80 bytes/clock transfer rate
Banks are valuable on writes: independently

Disadvantage
more complex bus hardware

One word wide memory organization
Advantage

Easy to implement, low hardware overhead
Disadvantage

Slow: 0.25 bytes/clock transfer rate

Chip Area Speed

Block Size Tradeoff

• In general, larger block size take advantage of spatial locality BUT:

– Larger block size means larger miss penalty:

• Takes longer time to fill up the block

– If block size is too big relative to cache size, miss rate will go up

• Too few cache blocks

• In gerneral, Average Access Time:

– = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

Cache associativity Figure 7.15

1�

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1�

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1�

2
Tag

Data

Search

Fully associative

Direct-mapped
cache

2-way set
associative

cache

Fully
associative

cache

Cache associativity

T ag D ata T ag D a ta Tag D a ta Ta g D a ta Ta g D a ta Ta g D a ta Ta g D ata T ag D ata

E ig ht-w a y se t a sso c ia t ive (fu lly a ssoc ia tive)

T ag D ata Tag D a ta Ta g D a ta Ta g D a ta

F ou r-w ay set assoc ia tive

S et

0

1

T ag D ata

O n e w a y se t a sso ciat ive�
(d irec t m a pp ed)

B lock

0

7

1

2

3

4

5

6

Ta g D a ta

T w o- w a y se t a sso cia t ive

S et

0

1

2

3

Ta g D a ta

Figure 7.16

A Two-way Set Associative Cache

• N-way set associative: N entries for each Cache Index

–N direct mapped caches operates in parallel

• Example: Two-way set associative cache

–Cache Index selects a “set” from the cache

–The two tags in the set are compared in parallel

–Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

A 4-way set associative implementation

2 2 8

V T a gIn d e x

0

1

2

2 5 3

2 5 4
2 5 5

D a ta V T a g D a ta V T a g D a ta V T a g D a ta

3 22 2

4 - to - 1 m u l t ip le x o r

H it D a ta

123891 01 11 23 03 1 0

Figure 7.19

Disadvantage of Set Associative Cache

• N-way Set Associative Cache versus Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and set selection

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Fully Associative

• Fully Associative Cache

–Forget about the Cache Index

–Compare the Cache Tags of all cache entries in parallel

–Example: Block Size = 2 B blocks, we need N 27-bit
comparators

• By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

Performance

0 %

3 %

6 %

9 %

1 2 %

1 5 %

E ig h t-w a yF o u r -w a yT w o -w a yO n e -w a y

1 K B �

2 K B �

4 K B �

8 K B

M
is

s
ra

te

A s s o c ia t iv ity 1 6 K B �

3 2 K B �

6 4 K B �

1 2 8 K B

Figure 7.29

Decreasing miss penalty with multilevel caches

• Add a second level cache:

–often primary cache is on the same chip as the processor

–use SRAMs to add another cache above primary memory
(DRAM)

–miss penalty goes down if data is in 2nd level cache

• Example:
–CPI of 1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM

access

–Adding 2nd level cache with 20ns access time decreases miss rate to
2%

• Using multilevel caches:

–try and optimize the hit time on the 1st level cache

–try and optimize the miss rate on the 2nd level cache

Decreasing miss penalty with multilevel caches

• Add a second level cache:

– often primary cache is on the same chip as the
processor

– use SRAMs to add another cache above primary
memory (DRAM)

– miss penalty goes down if data is in 2nd level cache

Decreasing miss penalty with multilevel caches

• Example:

– CPI of 1.0 on a 500Mhz machine with a 5% miss rate,
200ns DRAM access

– Adding 2nd level cache with 20ns access time
decreases miss rate to 2%

• Using multilevel caches:

– try and optimize the hit time on the 1st level cache

– try and optimize the miss rate on the 2nd level cache

A Summary on Sources of Cache Misses

• Compulsory (cold start or process migration, first
reference): first access to a block

–“Cold” fact of life: not a whole lot you can do about it

–Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

• Conflict (collision):

–Multiple memory locations mapped
to the same cache location

–Solution 1: increase cache size

–Solution 2: increase associativity

• Capacity:

–Cache cannot contain all blocks access by the program

–Solution: increase cache size

• Invalidation: other process (e.g., I/O) updates memory

Virtual Memory

• Main memory can act as a cache for the secondary storage
(disk) Advantages:

– illusion of having more physical memory

– program relocation

– protection
Physical addresses

Disk addresses

Virtual addresses

Address translation

Pages: virtual memory blocks

• Page faults: the data is not in memory, retrieve it from disk

– huge miss penalty, thus pages should be fairly large
(e.g., 4KB)

– reducing page faults is important (LRU is worth the
price)

– can handle the faults in software instead of hardware

– using write-through is too expensive so we use
writeback

Pages: virtual memory blocks

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Page Tables

Physical m em ory

D isk sto rage

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page tab le

Virtual page�
number

Physica l page or�
d isk address

Page Tables

P a g e o f f s e tV ir tu a l p a g e n u m b e r

V ir t u a l a d d re s s

P a g e o f f s e tP h y s ic a l p a g e n u m b e r

P h y s ic a l a d d r e s s

P h y s ic a l p a g e n u m b e rV a lid

I f 0 th e n p a g e is n o t�
p r e s e n t in m e m o r y

P a g e ta b le r e g is te r

P a g e ta b le

2 0 1 2

1 8

3 1 3 0 2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

Basic Issues in Virtual Memory System Design

size of information blocks that are transferred from
 secondary to main storage (M)

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size
page frames

pages

pages

reg

cache
mem disk

frame

TLBs: Translation Look-Aside Buffers

A way to speed up translation is to use a special cache of
recently used page table entries

-- this has many names, but the most frequently used is
Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

TLB access time comparable to cache access time
 (much less than main memory access time)

Making Address Translation Fast

• A cache for address translations: translation lookaside buffer

V a lid

1

1

1

1

0

1

1

0

1

1

0

1

P a g e ta b le

P h y s ic a l p a g e �
a d d re s sV a l id

T L B

1

1

1

1

0

1

T a g
V i r tu a l p a g e �

n u m b e r

P h y s ic a l p a g e �
o r d is k a d d r e s s

P h y s ic a l m e m o ry

D is k s to r a g e

Translation Look-Aside Buffers

Just like any other cache, the TLB can be organized as
 fully associative, set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256
entries even on high end machines. This permits fully
associative lookup on these machines. Most mid-range
machines use small n-way set associative organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

TLBs and caches

Yes

Deliver da ta�
to the CPU

W rite?

Try to read data�
from cache

W rite data into cache,�
update the tag, and put�

the data and the address�
in to the w rite bu ffe r

Cache h it?Cache m iss sta ll

TLB h it?

TLB access

V irtua l address

TLB m iss�
excep tion

No

YesNo

YesNo

W rite access�
b it on?

�

Y esNo

W rite p rotection�
excep tion

Physical address

Modern Systems

• Very complicated memory systems:
Characteristic Intel Pentium Pro PowerPC 604

Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

Figure 7.32

Summary: The Cache Design Space

• Several interacting dimensions

–cache size

–block size

–associativity

–replacement policy

–write-through vs write-back

–write allocation

• The optimal choice is a compromise

–depends on access characteristics

• workload

• use (I-cache, D-cache, TLB)

–depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Summary: TLB, Virtual Memory

• Caches, TLBs, Virtual Memory all understood by examining
how they deal with 4 questions: 1) Where can block be
placed? 2) How is block found? 3) What block is repalced on
miss? 4) How are writes handled?

• Page tables map virtual address to physical address

• TLBs are important for fast translation

• TLB misses are significant in processor performance:
(funny times, as most systems can’t access all of 2nd level
cache without TLB misses!)

Summary: Memory Hierachy

• VIrtual memory was controversial at the time:
can SW automatically manage 64KB across many
programs?

–1000X DRAM growth removed the controversy

• Today VM allows many processes to share single memory
without having to swap all processes to disk; VM protection
is more important than memory hierarchy

• Today CPU time is a function of (ops, cache misses) vs. just
f(ops):

What does this mean to Compilers, Data structures,
Algorithms?

