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· We’re ready to look at an implementation of the MIPS

· Simplified to contain only:

– memory−reference instructions:  lw, sw 

– arithmetic−logical instructions:  add, sub, and, or, slt

– control flow instructions:  beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address

– get the instruction from memory

– read registers

– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory−reference?  arithmetic? control flow?

The Processor:  Datapath & Control



· Abstract / Simplified View:

Two types of functional units:

– elements that operate on data values (combinational)

– elements that contain state (sequential)

More Implementation Details
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· Unclocked vs. Clocked

· Clocks used in synchronous logic 

–  when should an element that contains state be updated?

cycle time

rising edge

falling edge

State Elements



· The set−reset latch

– output depends on present inputs and also on past inputs

An unclocked state element



· Output is equal to the stored value inside the element
(don’t need to ask for permission to look at the value)

· Change of state (value) is based on the clock

· Latches:  whenever the inputs change, and the clock is asserted

· Flip−flop:  state changes only on a clock edge
(edge−triggered methodology)

"logically true", 

— could mean electrically low

A clocking methodology defines when signals can be read and written

— wouldn’t want to read a signal at the same time it was being written

Latches and Flip−flops



· Two inputs:

– the data value to be stored (D)

– the clock signal (C) indicating when to read & store D

· Two outputs:

– the value of the internal state (Q) and it’s complement
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D flip−flop

· Output changes only on the clock edge
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Our Implementation

· An edge triggered methodology

· Typical execution:

– read contents of some state elements, 

– send values through some combinational logic

– write results to one or more state elements

Clock cycle
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· Built using D flip−flops
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Register File

· Note:  we still use the real clock to determine when to write
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Simple Implementation

· Include the functional units we need for each instruction

Why do we need this stuff?
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Building the Datapath

· Use multiplexors to stitch them together
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Control

· Selecting the operations to perform (ALU, read/write, etc.)

· Controlling the flow of data (multiplexor inputs)

· Information comes from the 32 bits of the instruction

· Example:

 add $8, $17, $18 Instruction Format:

000000  10001  10010  01000  00000 100000

  op   rs   rt   rd  shamt  funct

· ALU’s operation based on instruction type and function code



· e.g., what should the ALU do with this instruction

· Example:  lw $1, 100($2)

   35   2   1        100

  op   rs   rt   16 bit offset

· ALU control input

000 AND
001 OR
010 add
110 subtract
111 set−on−less−than

· Why is the code for subtract 110 and not 011?

Control



· Must describe hardware to compute 3−bit ALU conrol input

– given instruction type 
00 = lw, sw
01 = beq, 
11 = arithmetic

– function code for arithmetic

· Describe it using a truth table (can turn into gates):

ALUOp 

computed from instruction type

Control

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111



Control

Instruction RegDst ALUSrc
Memto−

Reg
Reg 

Write
Mem 
Read

Mem 
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R−format 1 0 0 1 0 0 0 1 0
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Control

· Simple combinational logic (truth tables)
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· All of the logic is combinational

· We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when to write

· Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times
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Single Cycle Implementation

· Calculate cycle time assuming negligible delays except:

– memory (2ns), ALU and adders (2ns), register file access (1ns)
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Where we are headed

· Single Cycle Problems:

– what if we had a more complicated instruction like floating point?

– wasteful of area

· One Solution:

– use a “smaller” cycle time

– have different instructions take different numbers of cycles

– a “multicycle” datapath:
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· We will be reusing functional units

– ALU used to compute address and to increment PC

– Memory used for instruction and data

· Our control signals will not be determined soley by instruction

– e.g., what should the ALU do for a “subtract”  instruction?

· We’ll use a finite state machine for control

Multicycle Approach



· Finite state machines:

– a set of states and 

– next state function (determined by current state and the input)

– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review:  finite state machines
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Review:  finite state machines

· Example:  

B. 21 A friend would like you to build an “electronic eye” for use as a fake security device. 
 The device consists of three lights lined up in a row, controlled by the outputs Left, Middle, 
and Right, which, if asserted, indicate that a light should be on.  Only one light is on at a 
time, and the light “moves” from left to right and then from right to left, thus scaring away 
thieves who believe that the device is monitoring their activity.  Draw the graphical 
representation for the finite state machine used to specify the electronic eye.  Note that the 
rate of the eye’s movement will be controlled by the clock speed (which should not be too 
great) and that there are essentially no inputs.



· Break up the instructions into steps, each step takes a cycle

– balance the amount of work to be done

– restrict each cycle to use only one major functional unit

· At the end of a cycle

– store values for use in later cycles (easiest thing to do)

– introduce additional “ internal”  registers

Multicycle Approach
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· Instruction Fetch

· Instruction Decode and Register Fetch

· Execution, Memory Address Computation, or Branch Completion

· Memory Access or R−type instruction completion

· Write−back step

INSTRUCTIONS TAKE FROM 3 − 5 CYCLES!

Five Execution Steps



· Use PC to get instruction and put it in the Instruction Register.

· Increment the PC by 4 and put the result back in the PC.

· Can be described succinctly using RTL "Register−Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1:  Instruction Fetch



· Read registers rs and rt in case we need them

· Compute the branch address in case the instruction is a branch

· RTL:

A = Reg[IR[25−21]];
B = Reg[IR[20−16]];
ALUOut = PC + (sign−extend(IR[15−0]) << 2);

· We aren’t setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

Step 2:  Instruction Decode and Register Fetch



· ALU is performing one of three functions, based on instruction type

· Memory Reference:

ALUOut = A + sign−extend(IR[15−0]);

· R−type:

ALUOut = A op B;

· Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)



· Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

· R−type instructions finish

Reg[IR[15−11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R−type or memory−access)



· Reg[IR[20−16]]= MDR;

What about all the other instructions?

Write−back step



Summary:

Step name
Action for R−type 

instructions
Action for memory−reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25−21]]
decode/register fetch B = Reg [IR[20−16]]

ALUOut = PC + (sign−extend (IR[15−0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign−extend if (A ==B) then PC = PC [31−28] II
computation, branch/ (IR[15−0]) PC = ALUOut (IR[25−0]<<2)
jump completion

Memory access or R−type Reg [IR[15−11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20−16]] = MDR



· How many cycles will it take to execute this code? 

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

· What is going on during the 8th cycle of execution?

· In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions



· Value of control signals is dependent upon:

– what instruction is being executed

– which step is being performed

· Use the information we’ve acculumated to specify a finite state machine

– specify the finite state machine graphically, or

– use microprogramming

· Implementation can be derived from specification

Implementing the Control



· How many state bits will we need?

Graphical Specification of FSM
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· Implementation:

Finite State Machine for Control
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PLA Implementation

· If I picked a horizontal or vertical line could you explain it?
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· ROM = "Read Only Memory"

– values of memory locations are fixed ahead of time

· A ROM can be used to implement a truth table

– if the address is m−bits, we can address 2m entries in the ROM.

– our outputs are the bits of data that the address points to.

m is the "heigth", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 0

0 1 1 1 0 0 0 

1 0 0 0 0 0 0 

1 0 1 0 0 0 1

1 1 0 0 1 1 0

1 1 1 0 1 1 1



· How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines

(i.e., 210  = 1024 different addresses)

· How many outputs are there?
16 datapath−control outputs, 4 state bits = 20 outputs

· ROM is 210 x 20 = 20K bits    (and a rather unusual size)

· Rather wasteful, since for lots of the entries, the outputs are the same
— i.e., opcode is often ignored

ROM Implementation



· Break up the table into two parts

— 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM

— 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM
— Total:  4.3K bits of ROM

· PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don’t cares

· Size is (#inputs × #product−terms) + (#outputs × #product−terms)

For this example  =  (10x17)+(20x17) = 460 PLA cells

· PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA



· Complex instructions:  the "next state" is often current state + 1

Another Implementation Style
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Details
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R−format 0110 100011 l w 0011
000010 j mp 1001 101011 s w 0101
000100 b e q 1000
100011 l w 0010
101011 s w 0010

State number Address−control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0
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Instruction register
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Microprogramming

· What are the “microinstructions”  ?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p[

5–
0]

Adder

1

Datapath

Instruction register
opcode field

BWrite



· A specification methodology

– appropriate if hundreds of opcodes, modes, cycles, etc.

– signals specified symbolically using microinstructions

· Will two implementations of the same architecture have the same microcode?

· What would a microassembler do?

Microprogramming

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut−cond Fetch
JUMP1 Jump address Fetch



Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction’s function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift−by−two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut−cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.



· No encoding:

– 1 bit for each datapath operation

– faster, requires more memory (logic)

– used for Vax 780 — an astonishing 400K of memory!

· Lots of encoding:

– send the microinstructions through logic to get control signals

– uses less memory, slower

· Historical context of CISC:

– Too much logic to put on a single chip with everything else

– Use a ROM (or even RAM) to hold the microcode

– It’s easy to add new instructions

Maximally vs. Minimally Encoded



Microcode:  Trade−offs

· Distinction between specification and implementation is sometimes blurred

· Specification Advantages:

– Easy to design and write

– Design architecture and microcode in parallel

· Implementation (off−chip ROM) Advantages

– Easy to change since values are in memory

– Can emulate other architectures

– Can make use of internal registers

· Implementation Disadvantages,  SLOWER now  that:

– Control is implemented on same chip as processor

– ROM is no longer faster than RAM

– No need to go back and make changes
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