
Computer Architecture − Set Five

· We’re ready to look at an implementation of the MIPS

· Simplified to contain only:

– memory−reference instructions: lw, sw

– arithmetic−logical instructions: add, sub, and, or, slt

– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address

– get the instruction from memory

– read registers

– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why? memory−reference? arithmetic? control flow?

The Processor: Datapath & Control

· Abstract / Simplified View:

Two types of functional units:

– elements that operate on data values (combinational)

– elements that contain state (sequential)

More Implementation Details

Registers

Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

· Unclocked vs. Clocked

· Clocks used in synchronous logic

– when should an element that contains state be updated?

cycle time

rising edge

falling edge

State Elements

· The set−reset latch

– output depends on present inputs and also on past inputs

An unclocked state element

· Output is equal to the stored value inside the element
(don’t need to ask for permission to look at the value)

· Change of state (value) is based on the clock

· Latches: whenever the inputs change, and the clock is asserted

· Flip−flop: state changes only on a clock edge
(edge−triggered methodology)

"logically true",

— could mean electrically low

A clocking methodology defines when signals can be read and written

— wouldn’t want to read a signal at the same time it was being written

Latches and Flip−flops

· Two inputs:

– the data value to be stored (D)

– the clock signal (C) indicating when to read & store D

· Two outputs:

– the value of the internal state (Q) and it’s complement

D−latch

Q

C

D

_
Q

D

C

Q

D flip−flop

· Output changes only on the clock edge

QQ

_
Q

Q

_
Q

D
latch

D

C

D
latch

DD

C

C

D

C

Q

Our Implementation

· An edge triggered methodology

· Typical execution:

– read contents of some state elements,

– send values through some combinational logic

– write results to one or more state elements

Clock cycle

State
element

1
Combinational logic

State
element

2

· Built using D flip−flops

Register File

M
u
x

Register 0

Register 1

Register n – 1

Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Register File

· Note: we still use the real clock to determine when to write

n−to−1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0

1

n – 1

n

Simple Implementation

· Include the functional units we need for each instruction

Why do we need this stuff?

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign−extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Building the Datapath

· Use multiplexors to stitch them together

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

Control

· Selecting the operations to perform (ALU, read/write, etc.)

· Controlling the flow of data (multiplexor inputs)

· Information comes from the 32 bits of the instruction

· Example:

 add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

 op rs rt rd shamt funct

· ALU’s operation based on instruction type and function code

· e.g., what should the ALU do with this instruction

· Example: lw $1, 100($2)

 35 2 1 100

 op rs rt 16 bit offset

· ALU control input

000 AND
001 OR
010 add
110 subtract
111 set−on−less−than

· Why is the code for subtract 110 and not 011?

Control

· Must describe hardware to compute 3−bit ALU conrol input

– given instruction type
00 = lw, sw
01 = beq,
11 = arithmetic

– function code for arithmetic

· Describe it using a truth table (can turn into gates):

ALUOp

computed from instruction type

Control

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

Control

Instruction RegDst ALUSrc
Memto−

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R−format 1 0 0 1 0 0 0 1 0
l w 0 1 1 1 1 0 0 0 0
s w X 1 X 0 0 1 0 0 0
b e q X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

Control

· Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R−format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

· All of the logic is combinational

· We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when to write

· Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

Clock cycle

State
element

1
Combinational logic

State
element

2

Single Cycle Implementation

· Calculate cycle time assuming negligible delays except:

– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Where we are headed

· Single Cycle Problems:

– what if we had a more complicated instruction like floating point?

– wasteful of area

· One Solution:

– use a “smaller” cycle time

– have different instructions take different numbers of cycles

– a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers

Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

· We will be reusing functional units

– ALU used to compute address and to increment PC

– Memory used for instruction and data

· Our control signals will not be determined soley by instruction

– e.g., what should the ALU do for a “subtract” instruction?

· We’ll use a finite state machine for control

Multicycle Approach

· Finite state machines:

– a set of states and

– next state function (determined by current state and the input)

– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review: finite state machines

Next−state
function

Current state

Clock

Output
function

Next
state

Outputs

Inputs

Review: finite state machines

· Example:

B. 21 A friend would like you to build an “electronic eye” for use as a fake security device.
 The device consists of three lights lined up in a row, controlled by the outputs Left, Middle,
and Right, which, if asserted, indicate that a light should be on. Only one light is on at a
time, and the light “moves” from left to right and then from right to left, thus scaring away
thieves who believe that the device is monitoring their activity. Draw the graphical
representation for the finite state machine used to specify the electronic eye. Note that the
rate of the eye’s movement will be controlled by the clock speed (which should not be too
great) and that there are essentially no inputs.

· Break up the instructions into steps, each step takes a cycle

– balance the amount of work to be done

– restrict each cycle to use only one major functional unit

· At the end of a cycle

– store values for use in later cycles (easiest thing to do)

– introduce additional “ internal” registers

Multicycle Approach

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3

2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

· Instruction Fetch

· Instruction Decode and Register Fetch

· Execution, Memory Address Computation, or Branch Completion

· Memory Access or R−type instruction completion

· Write−back step

INSTRUCTIONS TAKE FROM 3 − 5 CYCLES!

Five Execution Steps

· Use PC to get instruction and put it in the Instruction Register.

· Increment the PC by 4 and put the result back in the PC.

· Can be described succinctly using RTL "Register−Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

· Read registers rs and rt in case we need them

· Compute the branch address in case the instruction is a branch

· RTL:

A = Reg[IR[25−21]];
B = Reg[IR[20−16]];
ALUOut = PC + (sign−extend(IR[15−0]) << 2);

· We aren’t setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

· ALU is performing one of three functions, based on instruction type

· Memory Reference:

ALUOut = A + sign−extend(IR[15−0]);

· R−type:

ALUOut = A op B;

· Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)

· Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

· R−type instructions finish

Reg[IR[15−11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R−type or memory−access)

· Reg[IR[20−16]]= MDR;

What about all the other instructions?

Write−back step

Summary:

Step name
Action for R−type

instructions
Action for memory−reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25−21]]
decode/register fetch B = Reg [IR[20−16]]

ALUOut = PC + (sign−extend (IR[15−0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign−extend if (A ==B) then PC = PC [31−28] II
computation, branch/ (IR[15−0]) PC = ALUOut (IR[25−0]<<2)
jump completion

Memory access or R−type Reg [IR[15−11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20−16]] = MDR

· How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

· What is going on during the 8th cycle of execution?

· In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

· Value of control signals is dependent upon:

– what instruction is being executed

– which step is being performed

· Use the information we’ve acculumated to specify a finite state machine

– specify the finite state machine graphically, or

– use microprogramming

· Implementation can be derived from specification

Implementing the Control

· How many state bits will we need?

Graphical Specification of FSM

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R−type completion

Write−back step

 (Op = ’LW’) or (O
p = ’SW’) (Op = R−type)

(O
p

=
’B

EQ
’)

(O
p

=
’J

’)

 (O
p = ’SW

’)

(O
p

=
 ’L

W
’)

4

0
1

9862

753

Start

· Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

PLA Implementation

· If I picked a horizontal or vertical line could you explain it?
Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

· ROM = "Read Only Memory"

– values of memory locations are fixed ahead of time

· A ROM can be used to implement a truth table

– if the address is m−bits, we can address 2m entries in the ROM.

– our outputs are the bits of data that the address points to.

m is the "heigth", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 1

1 1 0 0 1 1 0

1 1 1 0 1 1 1

· How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines

(i.e., 210 = 1024 different addresses)

· How many outputs are there?
16 datapath−control outputs, 4 state bits = 20 outputs

· ROM is 210 x 20 = 20K bits (and a rather unusual size)

· Rather wasteful, since for lots of the entries, the outputs are the same
— i.e., opcode is often ignored

ROM Implementation

· Break up the table into two parts

— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM

— 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
— Total: 4.3K bits of ROM

· PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don’t cares

· Size is (#inputs × #product−terms) + (#outputs × #product−terms)

For this example = (10x17)+(20x17) = 460 PLA cells

· PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA

· Complex instructions: the "next state" is often current state + 1

Another Implementation Style

AddrCtl

Outputs

PLA or ROM

State

Address select logic

O
p

[5
–

0]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

BWrite

Details
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R−format 0110 100011 l w 0011
000010 j mp 1001 101011 s w 0101
000100 b e q 1000
100011 l w 0010
101011 s w 0010

State number Address−control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

Microprogramming

· What are the “microinstructions” ?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p[

5–
0]

Adder

1

Datapath

Instruction register
opcode field

BWrite

· A specification methodology

– appropriate if hundreds of opcodes, modes, cycles, etc.

– signals specified symbolically using microinstructions

· Will two implementations of the same architecture have the same microcode?

· What would a microassembler do?

Microprogramming

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut−cond Fetch
JUMP1 Jump address Fetch

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction’s function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift−by−two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut−cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

· No encoding:

– 1 bit for each datapath operation

– faster, requires more memory (logic)

– used for Vax 780 — an astonishing 400K of memory!

· Lots of encoding:

– send the microinstructions through logic to get control signals

– uses less memory, slower

· Historical context of CISC:

– Too much logic to put on a single chip with everything else

– Use a ROM (or even RAM) to hold the microcode

– It’s easy to add new instructions

Maximally vs. Minimally Encoded

Microcode: Trade−offs

· Distinction between specification and implementation is sometimes blurred

· Specification Advantages:

– Easy to design and write

– Design architecture and microcode in parallel

· Implementation (off−chip ROM) Advantages

– Easy to change since values are in memory

– Can emulate other architectures

– Can make use of internal registers

· Implementation Disadvantages, SLOWER now that:

– Control is implemented on same chip as processor

– ROM is no longer faster than RAM

– No need to go back and make changes

The Big Picture

Initial
representation

Finite state
diagram

Microprogram

Sequencing
control

Explicit next
state function

Microprogram counter
+ dispatch ROMS

Logic
representation

Logic
equations

Truth
tables

Implementation
technique

Programmable
logic array

Read only
memory

