Computer Architecture - Set Four

Arithmetic

Where we’ve been:
— Performance (seconds, cycles, instructions)

— Abstractions:
Instruction Set Architecture
Assembly Language and Machine Language

What’'s up ahead:
— Implementing the Architecture

Arithmetic
Operation
reault
bﬁ;‘ M.o\@\
Numbers Possible Representations

Bits are just bits (no inherent meaning)
—conventions define relationship between bits and numbers

Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal: 0...2N-1

Of course, it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no M IPS subi instruction; addi can add a negative number)

How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Sign Magnitude One’s Complement Two’s Complement
000 =+0 000 =+0 000 =+0
001 =+1 001 =+1 001 =+1
010 =+2 010 =+2 010 =+2
011 =+3 011 =+3 011 =+3
100 =-0 100 = -3 100 = -4
101=-1 101 =-2 101 =-3
110=-2 110=-1 110=-2
111 =-3 111 =-0 111 =-1

Issues: balance, number of zeros, ease of operations
Which one is best? Why?

MIPS

32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000¢yo = Oten
0000 0000 0000 0000 0000 0000 0000 0001tyo = + lten

0000 0000 0000 0000 0000 0000 0000 0010¢ywo = + 2ten

0111 1111 1111 1111 1111 1111 1111 1110¢yo = + 2,147,483,646¢en _
0111 1111 1111 1111 1111 1111 1111 111lgyg = + 2,147,483,647¢e, - Maxint
1000 0000 0000 0000 0000 0000 0000 0000¢yo = — 2,147,483,648 ten

1000 0000 0000 0000 0000 0000 0000 000Llgyo = — 2,147,483,647 ton~ minint
1000 0000 0000 0000 0000 0000 0000 0010¢ywo = — 2,147,483,646 ten

1111 1111 1111 1111 1111 1111 1111 1101¢wo = — 3 ten

1111 1111 1111 1111 1111 1111 1111 1110¢w0 = — 2 ten

1111 1111 1111 1111 1111 1111 1111 1111440 = — 1 ten

Two’s Complement Operations

Negating a two’s complement number: invert all bits and add 1
— remember: “negate” and “invert” are quite different!
Converting n bit numbers into numbers with more than n bits:
— MIPS 16 bit immediate gets converted to 32 bits for arithmetic
— copy the most significant bit (the sign bit) into the other bits
0010 -> 0000 0010
1010 -> 1111 1010

— "sign extension" (lbu vs. 1b)

Addition & Subtraction

Just like in grade school (carry/borrow 1s)
0111 0111 0110
+ 0110 — 0110 - 0101

Two’s complement operations easy

— subtraction using addition of negative numbers
0111
+1010

Overflow (result too large for finite computer word):
— e.g., adding two n-bit numbers does not yield an n-bit number

- 0111

— +0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

Detecting Overflow

No overflow when adding a positive and a negative number
No overflow when signs are the same for subtraction
Overflow occurs when the value affects the sign:

— overflow when adding two positives yields a negative

— or, adding two negatives gives a positive

— or, subtract a negative from a positive and get a negative

— or, subtract a positive from a negative and get a positive
Consider the operations A+ B,and A-B

— Can overflow occur if Bis 0 ?

— Can overflow occur if Ais 0 ?

Effects of Overflow

An exception (interrupt) occurs

— Control jumps to predefined address for exception

— Interrupted address is saved for possible resumption
Details based on software system / language

— example: flight control vs. homework assignment

Don’t always want to detect overflow
—new MIPS nstructions: addu, addi u, subu

note: addi u still sign—-extends!
note: sltu, sltiu forunsigned comparisons

Review: Boolean Algebra & Gates

Problem: Consider alogic function with three inputs: A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output Fis true only if all three inputs are true

Show the truth table for these three functions.
Show the Boolean equations for these three functions.

Show an implementation consisting of inverters, AND, and OR gates.

An ALU (arithmetic logic unit)

Let’s build an ALU to support the andi and ori instructions
— we’ll just build a 1 bit ALU, and use 32 of them

*L operation Op|A| B| Res

a —>
b >

— result

Possible Implementation (sum-of-products):

Review: The Multiplexor

Selects one of the inputs to be the output, based on a control input

| S
y note: we call this a 2—input mux
A—> o even though it has 3 inputs!
—) C
B—>» 1

Lets build our ALU using a MUX:

Different Implementations

Not easy to decide the “best” way to build something

— Don’t want too many inputs to a single gate

— Dont want to have to go through too many gates

— for our purposes, ease of comprehension is important
Let’s look at a 1-bit ALU for addition:

CarryIn

|

a —1 Cout =ab +acjp+bcjp

+ —

v
Carry Out

sum sum = a xor b xor cjnp

How could we build a 1-bit ALU for add, and, and or?
How could we build a 32-bit ALU?

Building a 32 bit ALU

Calry\n Operation

—
a0 carryin
—1 Awo

b0

Canyout
ation T 17

—
al Carryln

Ope
Cafryin

—
b1 ALU1

Canyon

Result

a2 carryin
1 A2

\,arT/uu

lﬁ

—
a3l Carryln
ALU31

b2

CarryOut

b31

Resulto

Resultl

Result2

Result31

What about subtraction (a-b) ?

Two’s complement approch: just negate b and add.

How do we negate?

A very clever solution:

Binyvert Opelation

Result

CarryOut

Tailoring the ALU to the MIPS

Need to support the set-on-less—than instruction (slt)
— remember: sltis an arithmetic instruction
— produces a1 if rs < rt and 0 otherwise
— use subtraction: (a-b) < 0 implies a < b
Need to support test for equality (beq $t5, $t6, $t7)
— use subtraction: (a-b) = 0 implies a = b

Supporting slt

Can we figure out the idea?

Binyvert Operation
Cafryln

Result

Carryout

Binyert Operation
Caifryln "

Result

Set

[
I_z‘::;m_'_ Overflow

Binyert Calwln Operation

Ll

a0 __,| Carryln

bo ALUO Result0
Less

\,arlyuu

i)

al __,| Carryln
bl [ALU1 Resultl
0 Less

LdleULI

i

a2 __,| Carryin

b2 __,| ALU2 Result2

0 Less
LdleULI

— E———
a3l __,| Carryin Result31
b31 | ALU31 Sef
0 Less Overflow

Test for equality

Notice control lines:

000
001
010
110
111

and

or

add

subt ract
slt

eNote: zeroisa 1l when theresultiszero!

Operation

a0 —,

1

ALUO

Less

Carryln

Resuto— ¢

al)
b1l __,| ALUL

il

Less

Carryln

—
a2)
b2 | ALUZ2

il

Less

Carryln

Resit:

L,arT/uu

a3l |
b31 __,)]

1

Less

Carryln
ALU31

Resuitt— ¢ L
—.’D—[>o—>
— >

Zero

Overflow

Conclusion

We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
Important points about hardware
— all of the gates are always working
— the speed of a gate is affected by the number of inputs to the gate
— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)

— we’ll look at two examples for addition and multiplication

Problem: ripple carry adder is slow

Is a 32—-bit ALU as fast as a 1-bit ALU?

Is there more than one way to do addition?
— two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = bpcg + agco + aghg

¢z = bjcy + ajcy + ajby c2 =
c3 = bpcp + apco + aghy c3 =
C4 = bzcy + agcg + agbgz ¢4 =

Problem: ripple carry adder is slow

Two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

By successive substitutions of ¢, by c;

c1 bocg + agcg + agbo
c2 = bicq + aqcp + aibg

€2 = (bgcy + agto + aghg) by + (bpco + apco + aghp) ar + aib;

bocoby + agcoby + apgbgb; + bpcoa; + agcpas

+ agboa; + ajb;

c3 = bpcpy + agcp + aphy c3

c4 bzcz + azcz + aghgz cg4

Not feasible! Whv?

Carry-lookahead adder

An approach in—between our two extremes

Motivation:
— If we didn’t know the value of carry-in, what could we do?
— When would we always generate a carry? gi = aj bj

— When would we propagate the carry? pi = aj * bj

Did we get rid of the ripple?

€1 = 90 * PocO

€2 = 91 * pic1 €2 =
C3 = 92 + p2c2 €3 =
C4 = 93 * P3€3 Cq4 =

Feasible! Why?

Use principle to build bigger adders

Ca]rym

a0:: Carryln
b0 —| Result0—3
[
Z2— AR — pi
H
a3 —»|
b3 Carryookahead unit
L ci+1
—
a4 —s| carryin
Fefame Result4~7 - Can’t build a 16 bit adder this way... (too big)
b5 —>f Ay
26 —», — 3 pi+1 . .
w— GI gl - Could use ripple carry of 4-bit CLA adders
b7
! d+2 - Better: use the CLA principle again!
as—_—: Carryln
b8 —| Result8—11
[
a10 —»| ALU&g ——|pi+2
b10 —»| G2 gi+2
all —»
ci+3
312:: Carryln
b12 —> Result12—15
Simme .
ald —» ALUS;; —— pi+3
b14 —» G3 gi+3

al5 —»
b15 T4

CarryOut

Multiplication

More complicated than addition

— accomplished via shifting and addition
More time and more area

Let’s look at 3 versions based on gradeschool algorithm

0010 (multiplicand)
_ X 1011 (muiltiplier)

Negative numbers: convert and multiply

— there are better techniques, we won't look at them

Multiplication: Implementation

—
Multiplicand

1a. Add multiplicand to product and
hift the Multiplier register right 1 bil

32 bits

bit A

64 bits

Yes: 32 repetitions

Multiplication: Implementation

|

‘ Multiplicant

Controller

CNT
ALU ;<—
v / l

‘ Accumulator }—4 Multiplier /

Multiplication: Algorithm

i

Acc: =0
CNT:=0

M: = multiplicant (¥)

l

‘ Q: = Multiplier (X)

|
No

‘ Acc: = Ace(0:7) + M(0:7)
CNT:=CNT+1 ‘ 1

Yes
‘ Right SHIFT }7

No

State Control Machine

Division Algo

Acc
00000 1110 Divide 14=1110 by 3=11. B contains 0011
Initialize 00001 110 step 1: Shift
oo —00011 step 2: subtract
frensterinee @ -00010 1100 step 3: result negative; set quotient bit to 0
~ 00001 1100 step 4: restore
00011 100 step 1: shift
—00011 step 2: subtract
00000 1001 step 3: result non—negative; set quotient bit to 1
00001 001 step 1: shift
—00011 step 2: subtract
00010 0010 step 3: result is negative; set quotient bit 0
00001 0010 step 4: restore
00010 010 step 1: shift
—00011 step 2: subtract
00001 0100 step 3: result is negative; set quotient bit to 0
IATATANNA)] ninN cton A- voctaro: Mhint — N10N0 Romaidor — NNNTN ‘
Array Multiplier AND Array
y y
0
Y, 2
X N N
2
(x,2%+x, 254+ x,2°)(y, 2%+ y 2"+, 2°) N N
h *2¥o h XY N
X2Ys
(2+2) (2+1) (240)
XgYg2 ™ THX Y, 27X Y, 2 X, N N <
(1+2) (1+1) (1+0) \ \
TX Y2 X Y, 2T XY, 2 N N N
%1 ¥ *1Y1 !
(0+2) (0+1) (0+0)
TX, Y2 XY, 2T X, Y, 2 «
0
\ N XoYo \ o XoY1 \Xo3

Array Multiplier (Cont.)

Array Multiplier Basics

XY
272
X2% Xy 3 Xy Multiplication Time for n-bit numbers = 2(n-1) D + D’
! rjyl Lo, 12
Xy Adder Adder / where D and D’ are the propagation delays of an Addel
170
| / and an AND gate.
Xy Xy
/0 1 . /0 2 Component cost ~n?
*X0%o Adder Adder
[/ ANDs and Adders can combine into a single cell.
') Adder Adder I
Z i i ; Zv Z v
0 Zl 22 3 4 5
Carry—-Save Adder - 2 Stages Carry Save Adder: Basics
X0 Yo XY X, Y, X3y The n-bit Carry Save Adder consists of n disjoint Adders
i J. “ i l ‘ i J, % i l 23 .
Inputs: 3 n-bit numbers to be added

c + Ics

2

l l

s
f S S
0 1

+

T
(T T

Outputs: n sum bits (si) ; n carry bits (cy)
No carry propagation within adder
m >= 3 numbers may be added together by using a tree

structure of carry—save adders.

Floating Point (a brief look)

We need a way to represent
— numbers with fractions, e.g., 3.1416

— very small numbers, e.g., .000000001
— very large numbers, e.g., 3.15576 x 109
Representation:
— sign, exponent, significand: (—1)S19N x significand x 2€Xponent

— more bits for significand gives more accuracy

— more bits for exponent increases range
IEEE 754 floating point standard:
— single precision: 8 bit exponent, 23 bit significand

— double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating—point standard

Leading “1” bit of significand is implicit

Exponent is “biased” to make sorting easier
— all Os is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision

— summary: (-1)SI9N x (1+significand) x 2eXponent — bias

Example:

decimal: -.75 = —-3/4 = -3/22

binary: -.11=-1.1x 21
floating point: exponent =126 =01111110

IEEE single precision: 10111111010000000000000000000000

Floating Point Adder

A=a?2’ B=Db2°
A+B=a2’+b2°=c?2

r = max (p,q) t =|p-q| min (p,q)

Algorithm

Compare p andq ;

Shift Right fraction of min exponent mn(p,q) by t
Add shifted fraction

Count # of zeros, say u ; shift left leading zero to norm

Shift Right = Divide by 2 Shift Left = Multiply by 2

Floating Point Adder
A

p a

Function

t=|p-all

t = max{p.q}

Floating Point Complexities

Operations are somewhat more complicated (see text)
In addition to overflow we can have “underflow”
Accuracy can be a big problem

— |EEE 754 keeps two extra bits, guard and round
four rounding modes
positive divided by zero yields “infinity”
zero divide by zero yields “not a number”
— other complexities

Implementing the standard can be tricky
Not using the standard can be even worse
— see text for description of 80x86 and Pentium bug!

Summary

Computer arithmetic is constrained by limited precision

Bit patterns have no inherent meaning but standards do exist
— two’s complement
— |EEE 754 floating point

Computer instructions determine “meaning” of the bit patterns

Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and implementation).

We are ready to move on (and implement the processor)

you may want to look back (Section 4.12 is great reading!)

