
Computer  Architecture   −   Set  Four

Arithmetic

Arithmetic

· Where we’ve been:

– Performance (seconds, cycles, instructions)

– Abstractions:
  Instruction Set Architecture
  Assembly Language and Machine Language

· What’s up ahead:

– Implementing the Architecture
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· Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

· Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal:  0...2n−1

· Of course, it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no M IPS subi instruction; addi can add a negative number)

· How do we  represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers

·     Sign Magnitude          One’s Complement       Two’s Complement

000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = −0 100 = −3 100 = −4
101 = −1 101 = −2 101 = −3
110 = −2 110 = −1 110 = −2
111 = −3 111 = −0 111 = −1

· Issues:   balance, number of zeros, ease of operations

· Which one is best?  Why? 

Possible Representations



· 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648 ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647 ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646 ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3 ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2 ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1 ten

maxint

minint

MIPS

· Negating a two’s complement number:   invert all bits and add 1

– remember:  “negate” and “invert” are quite different!

· Converting n bit numbers into numbers with more than n bits:

– M IPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits

0010  −> 0000 0010

1010  −> 1111 1010

– "sign extension"   (lbu  vs.  lb)

Two’s Complement Operations

· Just like in grade school  (carry/borrow 1s)
  0111   0111     0110

  + 0110 − 0110 − 0101

· Two’s complement operations easy

– subtraction using addition of negative numbers
  0111
+ 1010

· Overflow  (result too large for finite computer word):

– e.g.,  adding two n−bit numbers does not yield an n−bit number
  

–   0111

– +0001 note that overflow term is somewhat misleading,
 1000 it does not mean a carry “overflowed”

Addition & Subtraction

· No overflow when adding a positive and a negative number

· No overflow when signs are the same for subtraction

· Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative 

– or, adding two negatives gives a positive

– or, subtract a negative from a positive and get a negative

– or, subtract a positive from a negative and get a positive

· Consider the operations A + B, and A − B

– Can overflow occur if B is 0 ?

– Can overflow occur if A is 0 ?

Detecting Overflow



· An exception (interrupt) occurs

– Control jumps to predefined address for exception

– Interrupted address is saved for possible resumption

· Details based on software system / language

– example:  flight control vs. homework assignment

· Don’t always want to detect overflow
— new  MIPS nstructions:    addu, addiu, subu

note:   addiu  still sign−extends!
note:   sltu,  sltiu  for unsigned comparisons

Effects of Overflow

· Problem:  Consider a logic function with three inputs:  A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

· Show the truth table for these three functions.

· Show the Boolean equations for these three functions.

· Show an implementation consisting of inverters, AND, and OR gates.

Review:  Boolean Algebra & Gates

· Let’s build an ALU to support the andi and ori instructions

– we’ll just build a 1 bit ALU, and use 32 of them

· Possible Implementation (sum−of−products):

b

a

operation

result

Op A B Res

An ALU (arithmetic logic unit)

· Selects one of the  inputs to be the output, based on a control input

· Lets build our ALU using a MUX:
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Review:  The Multiplexor

note: we call this a 2−input mux
         even though it has 3 inputs!



· Not easy to decide the “best”  way to build something

– Don’t want too many inputs to a single gate

– Dont want to have to go through too many gates

– for our purposes, ease of comprehension is important

· Let’s look at a 1−bit ALU for addition:

· How could we build a 1−bit ALU for  add, and, and  or?

· How could we build a 32−bit ALU?

Different Implementations

cout = a b + a cin + b cin

sum = a xor b xor cin

Carry In

Carry Out

Sum
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b

Building a 32 bit ALU
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· Two’s complement approch:  just negate b and add.

· How do we negate?

· A very clever solution:

What about subtraction  (a − b)  ?
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· Need to support the set−on−less−than instruction (slt)

– remember:  slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction:  (a−b) < 0 implies a < b

· Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction:  (a−b) = 0 implies a = b

Tailoring the ALU to the MIPS



Supporting slt

· Can we figure out the idea?
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Test for equality

· Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

"Note:  zero is a 1 when the result is zero!
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Conclusion

· We can build an ALU to support the MIPS instruction set

– key idea:  use multiplexor to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1−bit ALU to produce a 32−bit ALU

· Important points about hardware

– all of the gates are always working

– the speed of a gate is affected by the number of inputs to the gate

– the speed of a circuit is affected by the number of gates in series
(on the “critical path”  or the “deepest level of logic” )

· Our primary focus:  comprehension,  however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication



· Is a 32−bit ALU as fast as a 1−bit ALU?

· Is there more than one way to do addition?

– two extremes:  ripple carry and sum−of−products

Can you see the ripple?  How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 = 

c3 = b2c2 + a2c2 + a2b2 c3 = 

c4 = b3c3 + a3c3 + a3b3 c4 = 

Problem:  ripple carry adder is slow

Two extremes:  ripple carry and sum−of−products

Can you see the ripple?  How could you get rid of it?

By  successive substitutions of  c i+1  by  c i

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1

c2 = (b0c0 + a0c0 + a0b0) b1 + (b0c0 + a0c0 + a0b0) a1 + a1b1

   =  b0c0b1 + a0c0b1 + a0b0b1 + b0c0a1 + a0c0a1 

     + a0b0a1 + a1b1

c3 = b2c2 + a2c2 + a2b2 c3 = 

c4 = b3c3 + a3c3 + a3b3 c4 = 

Not feasible!  Why?

Problem:  ripple carry adder is slow

· An approach in−between our two extremes

· Motivation: 

–  If we didn’t know the value of carry−in, what could we do?

– When would we always generate a carry?      gi = ai bi 

– When would we propagate the carry?                pi = ai + bi

· Did we get rid of the ripple?

c1 = g0 + p0c0 

c2 = g1 + p1c1 c2 = 

c3 = g2 + p2c2 c3 = 

c4 = g3 + p3c3 c4 =

Feasible!  Why?

Carry−lookahead adder

· Can’t build a 16 bit adder this way... (too big)

· Could use ripple carry of 4−bit CLA adders

· Better:  use the CLA principle again! 

Use principle to build bigger adders
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· More complicated than addition

– accomplished via shifting and addition

· More time and more area

· Let’s look at 3 versions based on gradeschool algorithm

    0010     (multiplicand)

__x_1011     (multiplier)

· Negative numbers:  convert and multiply

– there are better techniques, we won’t look at them

Multiplication Multiplication:  Implementation

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No:  < 32 repetitions

Yes:  32 repetitions

64−bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

Multiplication:  Implementation

Multiplicant

    ALU

MultiplierAccumulator

Controller

    CNT

      Multiplication:   Algorithm



State  Control  Machine       Division   Algo
   Acc           A
  00000 1110 Divide  14=1110 by 3=11.  B  contains 0011
  00001 110 step 1:  Shift
−00011 step 2:  subtract
−00010 1100 step 3:  result negative; set quotient bit to 0
  00001 1100 step 4:  restore
  00011 100 step 1:  shift
−00011 step 2:  subtract
  00000 1001 step 3:  result non−negative; set quotient bit to 1
  00001 001 step 1:  shift
−00011 step 2:  subtract
  00010 0010 step 3:  result is negative; set quotient bit 0
  00001 0010 step 4:  restore
  00010 010 step 1:  shift
−00011 step 2:  subtract
  00001 0100 step 3:  result is negative; set quotient bit to 0
  00010 0100 step 4:  restore;  Quot = 0100, Remaider = 00010 
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  Array  Multiplier  (Cont.)
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Array  Multiplier  Basics

Multiplication  Time for  n−bit numbers =  2(n−1) D + D’

where  D  and D’  are  the propagation delays of an Adder

and  an  AND gate. 

Component cost   ~ n 2   

ANDs  and  Adders can combine into a single cell. 

   Carry−Save  Adder  −  2  Stages
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Carry  Save  Adder:  Basics

The  n−bit  Carry Save Adder consists of n disjoint Adders

Inputs:  3  n−bit numbers to be added

Outputs:  n sum bits (sk) ;  n  carry bits (ck) 

No carry propagation within adder

m  >= 3  numbers may be added together by using a tree

structure  of carry−save adders.  



Floating Point  (a brief look)

· We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576 × 109

· Representation:

– sign, exponent, significand:    (–1)sign ×  significand  ×  2exponent  

– more bits for significand gives more accuracy

– more bits for exponent increases range

· IEEE 754 floating point standard:  

– single precision:  8 bit exponent, 23 bit significand

– double precision:  11 bit exponent, 52 bit significand

IEEE 754 floating−point standard

· Leading “1”  bit of significand is implicit

· Exponent is “biased”  to make sorting easier

– all 0s is smallest exponent all 1s is largest

– bias of 127 for single precision and 1023 for double precision

– summary:   (–1)sign × (1+significand) ×  2exponent – bias 

· Example:

– decimal:  −.75 = −3/4 = −3/22

– binary:  −.11 = −1.1 x 2−1

– floating point:  exponent = 126 = 01111110

– IEEE single precision:  10111111010000000000000000000000

Floating  Point  Adder  

A= a 2 p
B = b 2q

A+ B = a 2p + b 2q = c 2r

r = max p,q

Algorithm

"  Compare  p  and q  ;  

"  Shift Right fraction of min exponent   min(p,q) by t

"  Add shifted fraction

"  Count # of zeros, say u ;  shift left leading zero to norm
 

t = p−q min p,q

                  Shift Right = Divide by 2          Shift Left = Multiply by 2

Floating  Point  Adder



Floating Point Complexities

· Operations are somewhat more complicated (see text)

· In addition to overflow we can have “underflow”

· Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “ infinity”

– zero divide by zero yields “not a number”

– other complexities

· Implementing the standard can be tricky

· Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

 Summary

· Computer arithmetic is constrained by limited precision

· Bit patterns have no inherent meaning but standards do exist

– two’s complement

– IEEE 754 floating point

· Computer instructions determine “meaning” of  the bit patterns

· Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and implementation).

· We are ready to move on (and implement the processor)

you may want to look back (Section 4.12 is great reading!)


