
Computer Architecture − Set Four

Arithmetic

Arithmetic

· Where we’ve been:

– Performance (seconds, cycles, instructions)

– Abstractions:
 Instruction Set Architecture
 Assembly Language and Machine Language

· What’s up ahead:

– Implementing the Architecture

32

32

32

Operation

Result

a

b

ALU

· Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

· Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal: 0...2n−1

· Of course, it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no M IPS subi instruction; addi can add a negative number)

· How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers

· Sign Magnitude One’s Complement Two’s Complement

000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = −0 100 = −3 100 = −4
101 = −1 101 = −2 101 = −3
110 = −2 110 = −1 110 = −2
111 = −3 111 = −0 111 = −1

· Issues: balance, number of zeros, ease of operations

· Which one is best? Why?

Possible Representations

· 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648 ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647 ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646 ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3 ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2 ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1 ten

maxint

minint

MIPS

· Negating a two’s complement number: invert all bits and add 1

– remember: “negate” and “invert” are quite different!

· Converting n bit numbers into numbers with more than n bits:

– M IPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits

0010 −> 0000 0010

1010 −> 1111 1010

– "sign extension" (lbu vs. lb)

Two’s Complement Operations

· Just like in grade school (carry/borrow 1s)
 0111 0111 0110

 + 0110 − 0110 − 0101

· Two’s complement operations easy

– subtraction using addition of negative numbers
 0111
+ 1010

· Overflow (result too large for finite computer word):

– e.g., adding two n−bit numbers does not yield an n−bit number

– 0111

– +0001 note that overflow term is somewhat misleading,
 1000 it does not mean a carry “overflowed”

Addition & Subtraction

· No overflow when adding a positive and a negative number

· No overflow when signs are the same for subtraction

· Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative

– or, adding two negatives gives a positive

– or, subtract a negative from a positive and get a negative

– or, subtract a positive from a negative and get a positive

· Consider the operations A + B, and A − B

– Can overflow occur if B is 0 ?

– Can overflow occur if A is 0 ?

Detecting Overflow

· An exception (interrupt) occurs

– Control jumps to predefined address for exception

– Interrupted address is saved for possible resumption

· Details based on software system / language

– example: flight control vs. homework assignment

· Don’t always want to detect overflow
— new MIPS nstructions: addu, addiu, subu

note: addiu still sign−extends!
note: sltu, sltiu for unsigned comparisons

Effects of Overflow

· Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

· Show the truth table for these three functions.

· Show the Boolean equations for these three functions.

· Show an implementation consisting of inverters, AND, and OR gates.

Review: Boolean Algebra & Gates

· Let’s build an ALU to support the andi and ori instructions

– we’ll just build a 1 bit ALU, and use 32 of them

· Possible Implementation (sum−of−products):

b

a

operation

result

Op A B Res

An ALU (arithmetic logic unit)

· Selects one of the inputs to be the output, based on a control input

· Lets build our ALU using a MUX:

S

C
A

B

0

1

Review: The Multiplexor

note: we call this a 2−input mux
 even though it has 3 inputs!

· Not easy to decide the “best” way to build something

– Don’t want too many inputs to a single gate

– Dont want to have to go through too many gates

– for our purposes, ease of comprehension is important

· Let’s look at a 1−bit ALU for addition:

· How could we build a 1−bit ALU for add, and, and or?

· How could we build a 32−bit ALU?

Different Implementations

cout = a b + a cin + b cin

sum = a xor b xor cin

Carry In

Carry Out

Sum

 a

b

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

· Two’s complement approch: just negate b and add.

· How do we negate?

· A very clever solution:

What about subtraction (a − b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

· Need to support the set−on−less−than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a−b) < 0 implies a < b

· Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a−b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt

· Can we figure out the idea?

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow

detection

Overflow

a.

b.

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

Test for equality

· Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

"Note: zero is a 1 when the result is zero!

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

Conclusion

· We can build an ALU to support the MIPS instruction set

– key idea: use multiplexor to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1−bit ALU to produce a 32−bit ALU

· Important points about hardware

– all of the gates are always working

– the speed of a gate is affected by the number of inputs to the gate

– the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

· Our primary focus: comprehension, however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication

· Is a 32−bit ALU as fast as a 1−bit ALU?

· Is there more than one way to do addition?

– two extremes: ripple carry and sum−of−products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 =

c3 = b2c2 + a2c2 + a2b2 c3 =

c4 = b3c3 + a3c3 + a3b3 c4 =

Problem: ripple carry adder is slow

Two extremes: ripple carry and sum−of−products

Can you see the ripple? How could you get rid of it?

By successive substitutions of c i+1 by c i

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1

c2 = (b0c0 + a0c0 + a0b0) b1 + (b0c0 + a0c0 + a0b0) a1 + a1b1

 = b0c0b1 + a0c0b1 + a0b0b1 + b0c0a1 + a0c0a1

 + a0b0a1 + a1b1

c3 = b2c2 + a2c2 + a2b2 c3 =

c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

Problem: ripple carry adder is slow

· An approach in−between our two extremes

· Motivation:

– If we didn’t know the value of carry−in, what could we do?

– When would we always generate a carry? gi = ai bi

– When would we propagate the carry? pi = ai + bi

· Did we get rid of the ripple?

c1 = g0 + p0c0

c2 = g1 + p1c1 c2 =

c3 = g2 + p2c2 c3 =

c4 = g3 + p3c3 c4 =

Feasible! Why?

Carry−lookahead adder

· Can’t build a 16 bit adder this way... (too big)

· Could use ripple carry of 4−bit CLA adders

· Better: use the CLA principle again!

Use principle to build bigger adders

CarryIn

Result0−−3

ALU0

CarryIn

Result4−−7

ALU1

CarryIn

Result8−−11

ALU2

CarryIn

CarryOut

Result12−−15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a11

b11

a12

b12

a13

b13

a14

b14

a15

b15

Carry−lookahead unit

· More complicated than addition

– accomplished via shifting and addition

· More time and more area

· Let’s look at 3 versions based on gradeschool algorithm

 0010 (multiplicand)

__x_1011 (multiplier)

· Negative numbers: convert and multiply

– there are better techniques, we won’t look at them

Multiplication Multiplication: Implementation

Done

1. Test

Multiplier0

1a. Add multiplicand to product and

place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64−bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

Multiplication: Implementation

Multiplicant

 ALU

MultiplierAccumulator

Controller

 CNT

 Multiplication: Algorithm

State Control Machine Division Algo
 Acc A
 00000 1110 Divide 14=1110 by 3=11. B contains 0011
 00001 110 step 1: Shift
−00011 step 2: subtract
−00010 1100 step 3: result negative; set quotient bit to 0
 00001 1100 step 4: restore
 00011 100 step 1: shift
−00011 step 2: subtract
 00000 1001 step 3: result non−negative; set quotient bit to 1
 00001 001 step 1: shift
−00011 step 2: subtract
 00010 0010 step 3: result is negative; set quotient bit 0
 00001 0010 step 4: restore
 00010 010 step 1: shift
−00011 step 2: subtract
 00001 0100 step 3: result is negative; set quotient bit to 0
 00010 0100 step 4: restore; Quot = 0100, Remaider = 00010

Array Multiplier

x
0
22+x

1
21+x

2
20 y

0
22+ y

1
21+ y

2
20

x
0

y
0
2 2+2 +x

0
y

1
2 2+1 +x

0
y

2
2 2+0

+x
2

y
0
2 0+2 +x

2
y

1
2 0+1 +x

2
y

2
2 0+0

+x
1

y
0
2 1+2 +x

1
y

1
2 1+1 +x

1
y

2
2 1+0

AND Array

x
0

x
1

x
2

y
0 y

1
y

2

x
2

y
0

x
1

y
0

x
2

y
2

x
2

y
1

x
0

y
2

x
0

y
1x

0
y

0

x
1

y
2x

1
y

1

 Array Multiplier (Cont.)

x
0

y
1

x
0

y
2

x
1

y
2

x
1

y
0

x
0

y
0

x
1

y
1

 Adder Adder

 Adder Adder

 Adder Adder

x
2

y
0

x
2

y
1

z
5

z
0 z

1
z

2
z

3 z
4

x
2

y
2

Array Multiplier Basics

Multiplication Time for n−bit numbers = 2(n−1) D + D’

where D and D’ are the propagation delays of an Adder

and an AND gate.

Component cost ~ n 2

ANDs and Adders can combine into a single cell.

 Carry−Save Adder − 2 Stages

+ + + +

+ + + +

x
0

y
3

x
3

y
2

x
2

y
1

x
1

y
0

w
0

w
3

w
2

w
1

s
0

s
1

s
3

s
2

c
1

c
3

c
2

z
0

z
3

z
2

z
1

Carry Save Adder: Basics

The n−bit Carry Save Adder consists of n disjoint Adders

Inputs: 3 n−bit numbers to be added

Outputs: n sum bits (sk) ; n carry bits (ck)

No carry propagation within adder

m >= 3 numbers may be added together by using a tree

structure of carry−save adders.

Floating Point (a brief look)

· We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576 × 109

· Representation:

– sign, exponent, significand: (–1)sign × significand × 2exponent

– more bits for significand gives more accuracy

– more bits for exponent increases range

· IEEE 754 floating point standard:

– single precision: 8 bit exponent, 23 bit significand

– double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating−point standard

· Leading “1” bit of significand is implicit

· Exponent is “biased” to make sorting easier

– all 0s is smallest exponent all 1s is largest

– bias of 127 for single precision and 1023 for double precision

– summary: (–1)sign × (1+significand) × 2exponent – bias

· Example:

– decimal: −.75 = −3/4 = −3/22

– binary: −.11 = −1.1 x 2−1

– floating point: exponent = 126 = 01111110

– IEEE single precision: 10111111010000000000000000000000

Floating Point Adder

A= a 2 p
B = b 2q

A+ B = a 2p + b 2q = c 2r

r = max p,q

Algorithm

" Compare p and q ;

" Shift Right fraction of min exponent min(p,q) by t

" Add shifted fraction

" Count # of zeros, say u ; shift left leading zero to norm

t = p−q min p,q

 Shift Right = Divide by 2 Shift Left = Multiply by 2

Floating Point Adder

Floating Point Complexities

· Operations are somewhat more complicated (see text)

· In addition to overflow we can have “underflow”

· Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round

– four rounding modes

– positive divided by zero yields “ infinity”

– zero divide by zero yields “not a number”

– other complexities

· Implementing the standard can be tricky

· Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

 Summary

· Computer arithmetic is constrained by limited precision

· Bit patterns have no inherent meaning but standards do exist

– two’s complement

– IEEE 754 floating point

· Computer instructions determine “meaning” of the bit patterns

· Performance and accuracy are important so there are many
complexities in real machines (i.e., algorithms and implementation).

· We are ready to move on (and implement the processor)

you may want to look back (Section 4.12 is great reading!)

