Name:
Email:

1				N		Problem 1.
ဝ	Ω	4	ယ	N		m 1.
WB	MEM	EX	コ	ID	Ħ	Assume a
Register Write	Data Access	ALU	Register Read	Register Read	Instruction fetch	a simple 6 stage pi
8 ns	7 ns,	9 ns;	1 ns; Read register \$rt;	3 ns; Read register \$rs; Branch decision made here	2 ns	Assume a simple 6 stage pipeline with the following execution times

This computer has the following instructions:

- - - -					Ins
8	sll \$rt, \$rs,\$rt	lw \$rt, addr16(\$rs)	bz \$rs, disp16	clear \$rd	Instruction
70 2	\$rt = \$rs << \$rt	t = Mem[addr16+\$rs]	pc = pc+2+(\$rs=0?disp16:0)	\$rd = 0	Operation

Alternate

<u>~</u>	1a (12%) Fill in the following tables	in the fo	llowing t	ables			Q	10	2
_	Instruction IF	ਜ	₽	ㅋ	EX	MEM	₩B	Total	Multi
•								Time	Cycles
	clear	1)			2		8	19	3
0	bz	12	B				St.	5	2
တ	<u>s</u>	2	2 3		٥	·	∞	23	5
_	V	P	(U)		٥	4	S	29	5

1b (9%) Fill the following table and show work.

10 (0/0) 1 III 11 II I I I I I I I I I I I I I	(2/6) I III die following table and snow work.	
Instruction	Clock frequency CPI (no hazards)	MIPS (no hazards)
Single-cycle CPU $\pm q = 34.484112$	主q=34-48HHZ	34.48 = 34.48
Multi-cycle CPU	19=111.1 HH2(0 B+2+5+5).25 = 3.75(0x)	29.626 (x) 31.743
Pipeline CPU	1 /9=111-1HHZ	里:11-1

1c (5%) Given two CPU designs, (a) CPU A has clock of 3.6Ghz and 1000 MIPS, (b) CPU B has clock of 2.5 Ghz and 1500 MIPS: Which is better and why?

8 7	performance	E wock	O B has
better MIPS Number frequency is not a appropriate for determining the true rue of the machine	ie of the	frequency is	A L

wide. memory system is smart and loads the proper 16 bits in the IR register in one memory read cycle. **Problem 2:** The RISCEE8 computer is a multi-cycle architecture for the following machine instructions. **Use X for Don't Care**. Assume parts a, b, c, and d **are independent of each other.** Assume the 8 bit There is only a single 8 bit register (i.e. accumulator, called A). The PC and alu are also eight bits

This computer has the following instructions:

Instruction	Operation
clear A	A = 0; pc=pc+2
Load A,offset8(A)	A = Mem[A+Offset8]; pc=pc+2

There is only one instruction format shown as follows:

Opcode	Offset8 field
8 bits	8 bits
15-8	7-0

2a (10%) Fill in the settings of the control lines needed for the "clear" instruction

(5% extra credit for using X=Don't Cares correctly)

T_5	T_4	T_3	T_2	크	Clock
		0	Ø	0	MemW
		×	*		MemR lorD IRW
		×	×.	-	lorD
		0	0	_	IRW
		- (5	7	ВР
		0	×	O	ΒZ
		×	ω	0	ALUsrcA
		×	-	0	ALUsrcB
		≯	×		ALUop
		_	9	0	RegW
		0	×.	×	RegDs t

2b (5%) Write the datapath expression for T₁:

2c (5%) Write the datapath expression for T₂:

2d (5%) Write the datapath expression for T₃:

3a (10%) Fill in the settings of the control lines needed for the "**Load**" instruction from Problem 2 (5% extra credit for using X=Don't Cares correctly)

7	T ₆	T_5	T_4	T_3	T_2	<u> </u>	Clock
			0	0	0	0	Clock MemW MemR lorD IRW BP BZ
			×	_	≫		MemR
			×	0	Ж		lorD
			0	0	0		lorD IRW
			_	_	9	_	BP
			0	0	×	9	ΒZ
			*	≫	Ŋ	0	ALUsrcA
			×	Х	ယ	0	ALUsrcA ALUsrcB ALUop
			×	×	_	_	ALUop
				0	0	0	RegW
				ゞ	×	خ	RegDs t

3b (5%) Write the datapath expression for T₂:
Aといりの下 告子子 ゆ

3c (5%) Write the datapath expression for T₃:

3d (5%) Write the datapath expression for T₄:

the same time.) 4. Draw lines showing all the data dependencies in "Time" column. and show the 5-stage pipeline sequence (IF, ID, EX, M, WB) for the following code (Note: Can access instruction and data memory at

4a (6%) Using no forwarding and cannot write and read the same register within a single clock cycle.

dus	W	dus	Time
\$9, \$7, \$8	\$2, 3(\$1)	\$4, \$2, \$1	
		II- ID EX H WB	_
	Tr	D	2
H	A	EX	ω
IF ID EX H WB	IF ID EX M WB	I	3 4 5
& X	工	AM	വ
r	Zw		6
SON			7
			8 9
			9
			10
			1
			10 11 12 13
			13
			14
			5
			16

4b (6%) Using no forwarding and cannot write and read the registers within a single clock cycle

dus	١w	sub	Time
\$5, \$4, \$2	\$4, 8(\$4)	\$4, \$2, \$1	
		IT ID EX H WB	_
	#	U	2
B	正面位在在	X	ω
北北	A	エ	4
进出	\alpha\	Z 7	7
47	De		6
F	X		7
任任	CX Z		∞
A	S.S.		9
X3 OF OF			10 11
Ž			1
工			12 13
H WB			13
			14
			15
			16

4c (6%) Using no forwarding and can write and read the registers within a single clock cycle.

sub	W	sub	Time
\$5, \$4, \$2	\$4, 8(\$4)	\$4, \$2,\$1	
		F	1
	R	B	2
H	任在在	€×	ယ
四年江江五	S.	EX H	4
7	とあれ	N. W.	Ŋ
7	8		6
H	エ		7
J.	W.		ω
Ex			9
エ			1 0
JD & H WB			
			12
			<u>1</u> 3
-			14
			5
			16

4d (6%) Using forwarding and can write and read the registers within a single clock cycle

dus	W	sub	Time
\$5, \$4, \$2	\$4, 8(\$4)	_	
		A P	_
	F)	Ħ	Ν
A	IF ID EX H, WB	N X3 (F)	2 3
B	Ž,	エ	4
THE AS IN EX MY WIS	I	Z.	5 6
Ž,	ROB		တ
Ž			7
Sign			ω
			9
			10
			1
			12
			<u>1</u> 3
			14
			15
			16

arrays? Extra Credit (5%): In the MIPS paper, what aspect about RISC allows the use of programmed logic

Instructions are all one les devoding Instructions logic. execulte 300 Dis Sie, that gesults in

RISCEE 8 Architecture

