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EDSAC 1949: the first computer

Designed and built at Cambridge
University, England, the EDSAC is
the first full-scale operational
stored-program computer, and is
therefore the final candidate for the
title of "the first computer".

EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.html

The EDSAC performed its first
calculation on May 6, 1949, when a
length of perforated paper tape was
threaded through the tape reader
connected to the machine, and a few seconds later, the computer's printer
began clattering out a list of numbers: 1, 4, 9, 16, 25, 36....



EDSAC: subroutines, relocatable, BIOS

• Indeed, EDSAC could access a library of programs called (would-you-
believe) subroutines,
• including what was thought impossible at the time:  a subroutine for
numerical integration which (by calling an "auxiliary" subroutine) could
be written without knowledge of the function to be integrated! (pass the
by address of another function to a subroutine)
• A  problem: whenever a tape was read the subroutine may not go to the
same memory locations so certain memory addresses had to be changed.
This problem was overcome by preceding each piece of code with a set
of "coordinating orders", making it self-relocatable.
• The next major advance demonstrated by this machine, was a
continuation of EDSAC’s subroutine idea. The concept of a bootstrap
was invented - a program that is run every time the machine is turned on.
Today, we call that shadow ROM BIOS.
EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.html



EDSAC architecture

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/simulators/echo/refindex.html

Typical execution times were
1.5 milliseconds for the simple
      commands = 667 adds/sec
4.5 milliseconds for a
      multiply = 222 mults/sec



EDSAC memory

http://kbs.cs.tu-berlin.de/~jutta/time/msb-chronology-of-dcm.html
http://home.golden.net/~pjponzo/CSH.htm

Its main memory is of a type that had existed
for some years, but had not been used for a
computing machine: the "ultrasonic delay
line" memory.

It had been invented originally by William
Shockley of Bell Labs (also one of the co-
inventors of the transistor, in 1948), and
Presper Eckert had made an improved version
in connection with radar systems.

The "delay storage" referred to an
electromechanical delay line: oscillating
quartz crystals generated pulses in tubes of
mercury and the pulses were recycled to
provide memory.

In place of mercury, Turing suggested gin and
tonic because the speed of propagation was
relatively insensitive to temperature changes!

Memory Store: Mercury Delay Tanks



EDSAC memory: FIFOs

http://www.science.uva.nl/faculteit/museum/delayline.html Memory Store: Mercury Delay Tanks



EDSAC Description
System Clock: 0.5 Mhz

Arithmetic: No overflow or carry bit. Serial +, –, ×××× and &
Registers:  A=71 bits, multiplier H=35 bits, PC=10 bits, IR=15bits.

Better than a 32 bit processor!
One Instruction format:  Opcode18..14 Spare13 Address12..2 Length1

Input/Output Paper tape, Printer, 0-9 telephone dial, 16x36 video
Memory organization: 1024 words (i.e. about 2 kilobytes)

= 32 mercury tanks containing  32 18-bit words
Boot strap loader: Hardwired circuit fills first tank with 31 instructions

Today, we call that shadow ROM BIOS
Short word: Mem[n] =Mem[n]18..1 (Bit 0 is always lost, can only use 17 bits)
Long word: Mem35..1[n+1]   = Mem[n+1]18..0|| Mem[n]18..1

Serial Memory: can run two adjacent memory location together
Technology: 3500 Tubes

Ref: The Origins of Digital Computers, Brian Randell, 1975, 2nd, Springer-Verlag



EDSAC CPU

Ref: http://www.dcs.warwick.ac.uk/~edsac



EDSAC I/O



EDSAC People



EDSAC Instructions (formally called orders)

Instruction
A n S A70..0 = A70..0 + Mem[n]18..1||052..0

A n L A70..0 = A70..0 + Mem[n+1]35..1||035..0

A n w A70..0 = A70..0 + Mem.w[n]
S n w A70..0 = A70..0 – Mem.w[n]
R n S A70..0 = A70..0 >> n
L n S A70..0 = A70..0 << n
C n w A70..0 = A70..0 & Mem.w[n]
H n w H34..0 = Mem.w[n]
V n w A70..0 = A70..0 + H34..0*Mem.w[n]
N n S A70..0 = A70..0 – H34..0*Mem.w[n]



EDSAC Instructions (i.e. orders)

Instruction
T n S Mem[n]18..1     = A70..53;  A70..0=0;
T n L  Mem[n+1]35..1 = A70..36;  A70..0 =0;
U n S Mem[n]18..1 = A70..53

U n L Mem[n+1]35..1 = A70..36;

E n S  PC9..0 = (A >= 0)? n :  PC9..0+1;
G n S  PC9..0 = (A < 0)?   n :  PC9..0+1;
Z S Stop the machine and ring the warning bell

I n S  Mem[n]18..14 = Paper Tape Reader
O n S  Printer = Mem[n]18..14  (print character in opcode position)
F n S  Mem[n]18..14 = Printer character buffer



EDSAC 1952 Tic-Tac-Toe program

16 by 36 memory mapped monochrome (1-bit) video
Each memory bit corresponds to a pixel (picture element) on the display

Ref: http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

The EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac



EDSAC instruction comparison

Modern computers provide instructions for
call:    jal address
return:      jr $ra
indexing:  lw $rt, $offset($rs)

The EDVAC achieved this through self modifying code

At the time, the Von Neuman architecture was view as vital
(i.e. instructions and data are contained in the same memory)

For example: suppose loads on the MIPS could not add a base register
How would we do: lw $3,offset($1)

32: addi $2,$1,offset #add offset plus base
36: sh $2,42($0) #store within lw instruction
40: lw $3,0($0)         



EDSAC Hello, World

31: T53S # A=0; last line of code +1 for loader
32: O41S # Printer = Mem[41..52]
33: A32S # A=A+Mem[32]; get instruction at 32
34: A39S # A=A+2; add 1 to address field
35: U32S # Mem[32]=A; store new instruction
36: S40S # A=A-”O53S”; stop output?
37: G31S # if (A<0) then no and goto 31
38: ZS # stop machine and ring the bell
39: P1S # use instruction to define word =2
40: O53S # use instr. to compare last index

31: T53S # A=0; last line of code +1 for loader
32: O41S # Printer = Mem[41..52]
33: A32S # A=A+Mem[32]; get instruction at 32
34: A39S # A=A+2; add 1 to address field
35: U32S # Mem[32]=A; store new instruction
36: S40S # A=A-”O53S”; stop output?
37: G31S # if (A<0) then no and goto 31
38: ZS # stop machine and ring the bell
39: P1S # use instruction to define word =2
40: O53S # use instr. to compare last index

41: *S #letter shift
42: HS
43: ES
44: LS
45: LS
46: OS
47: !S  #blank
48: WS
49: OS
50: RS
51: LS
52: DS

41: *S #letter shift
42: HS
43: ES
44: LS
45: LS
46: OS
47: !S  #blank
48: WS
49: OS
50: RS
51: LS
52: DS

Note that the letter code and opcode as the same
Actual paper tape source input (load for initial orders 1)
T53SO41SA32SA39SU32SS40SG31SZSP1SO53S
*SHSESLSLSOS!SWSOSRSLSDS

Note that the letter code and opcode as the same
Actual paper tape source input (load for initial orders 1)
T53SO41SA32SA39SU32SS40SG31SZSP1SO53S
*SHSESLSLSOS!SWSOSRSLSDS

Note that the letter code and opcode as the same
Simplifies loader (loader acted as an assembler too!)
      11100 = ‘A’ = Add opcode



EDSAC versus the EDVAC: battle of being the first

Before von Neumann, computer programs were stored either
mechanically (on cards or even by wires that connected a matrix of
points together in a special pattern like ENIAC) or in separate memories
from the data used by the program.
Von Neumann introduced the concept of the stored program—both the
program that specifies what operations are to be carried out and the data
used by the program are stored in the same memory.
Although EDVAC is generally regarded as the first stored program
computer, Randell states that this is not strictly true [Randell94].
EDVAC did indeed store data and instructions in the same memory, but
data and instructions did not have a common format and were not
interchangeable.
Sadly, EDVAC was not a great success in practical terms. Its
construction was (largely) completed by April 1949, but it did not run its
first applications program until October 1951. (EDSAC was 1949)

Ref: http://wheelie.tees.ac.uk/users/a.clements/History/History.htm



Turing machine
A Turing machine (TM) typically works as follows:

1. Read the input symbol from the tape.
2. Choose the next operation found in the state transition table
    (i.e. FSM), based upon the current state, and the input symbol.
3. Write the output symbol indicated in the matrix cell.
4. Transform into the next state indicated in the matrix cell.
5. Move the tape pointer in the direction indicated in the matrix cell.
6. If the next state is not H, the Halt state, start the instruction loop at
the top.



EDSAC versus the Turing machine

A Turing machine is a very simple machine, but, logically speaking, has
all the power of any digital computer. It may be described as follows: A
Turing machine processes an infinite tape whereas a digital computer
processes a finite tape.



EDVAC architecture comparison

EDVAC differs from the modern computers of today:
CPU:     Serial ALU to parallel & multiple ALUs and pipelining
Registers: Serial 71 bit accumulator to 64bit parallel & multiple registers
Memory:   Serial Mercury Delay Tubes to parallel DRAM CMOS

    Single-level memory to multi-level: Disk, RAM, L2, L1 cache
Input:     Paper tape to keyboards, mouse, scanners, cdroms, …
Output:     Teletype printer and a bell to 24-bit video, 16-bit sound,

The key design components
parallelism: achieved though architecture
switching delay: achieved through technology (silicon)
area: vacuum tubes to silicon
power: vacuum tubes to silicon
cost: mass manufacturing, marketing & sales



• 1971 Intel 4004, 4-bit, 0.74 Mhz, 16 pins,
2250 Transistors

• Intel publicly introduced the world’s first single chip
microprocessor: U. S. Patent #3,821,715.

• Intel took the integrated circuit one step further, by placing
CPU, registers, memory access, I/O on a single chip

Intel Microprocessor History: 4004



• 1974 Intel 8080, 8-bit, 2 Mhz, 40 pins,
4500 Transistors

Altair 8800 Computer

Bill Gates & Paul Allen
write their first Microsoft software

product: Basic

Intel Microprocessor History: 8080



• 1995 Intel Pentium Pro, 32-bit ,200 Mhz internal clock, 66
Mhz external, Superpipelining, 16Kb L1 cache, 256Kb L2
cache, 387 pins, 5.5 Million Transistors

Intel Processor History: Penitum Pro



Intel’s Microprocessor evolution



RISC Project

Each team must turn in a report which contains the following

(1) Cover sheet with up to 3 team members names & signatures

(2) Description of the problem, enhancements, & lessons learned.

(3) (a) Comment “# C source code statements” followed by MIPS
assembler source related it. (b) Also, comment each “# assembler
source” statement. (c) Must use at least the given functions & data
structure described later.

(4) Flowchart of the function: game_move( )

(5) Floppy disk of the (1)-(3).

(6) Demo with all members present with TA asking questions.

Note: you will get no credit by just handing in C code!



Wopr: example
How the program should work
wopr

Shall we play a game?

Global thermonuclear War

Wouldn’t you prefer a
 good game of toe-tac-tic?

toe-tAc-Tic

X: please enter your move?

1
Strcasecmp()
Case
insensitive
string matching

Strcasecmp()
Case
insensitive
string matching

   X |   |
  ---+---+---
     | O |
  ---+---+---
     |   |



Wopr: con’t

X: please enter your move?

7

   X |   |
  ---+---+---
   O | O |
  ---+---+---
   X |   |

X: please enter your move?

6

   X | O |
  ---+---+---
   O | O | X
  ---+---+---
   X |   |



Wopr: con’t

X: please enter your move? 8

   X | O |
  ---+---+---
   O | O | X
  ---+---+---
   X | X | O

Draw. Game over.

Shall we play a game?

List Games

1.) Toe-Tac-Tic

2.) logoff.

Shall we play a game?

logoff

logoff.



Wopr: Reverse Tic-Tac-Toe

Toe-tac-tic: Reverse Tic-Tac-Toe

Object of the game:
Avoid getting three marks in a row (the opposite of tic tac toe)
The play stops when a player gets 3 in a row (loses) or a draw.

For example see: http://tictactoe.javagamz.com/toetactic.html

RISC Project:
     wopr: this program is inspired by the movie, wargames.



Wopr: functions

Write at least these functions (using MIPS register conventions):
main()
# Main program: reads keyboard for “logoff”, “list games”,
“toe-tic-tac” and calls TICTACTOE;
void game_print(struct TICTACTOE *game);
# prints the tic-tac-toe board (player: 1=O, 2=X, 0=blank )
# also prints status only if win or draw
void game_init(struct TICTACTOE *game);
# initializes the data structure board to blank
int game_set(struct TICTACTOE *game, position);
# sets & checks for valid move for current player
void game_move(struct TICTACTOE *game);
# generates the computers move for current player
int game_check(struct TICTACTOE *game);
# test and sets the game status flag to draw or win
# return 1 if game over and return to main(); else return 0

(see Appendix A & A-22)



Wopr: data structure
struct TICTACTOE {

signed char *board;
short  current_player; /* 1=O, 2=X */
short  status;

/* -1=pending,0=draw,1=player wins,2=player wins */

};

...

game_toetictac() {

struct TICTACTOE toetactic;

struct TICTACTOE *game = &toetactic;

char board9x9[9];

game->board = board9x9;

game_init(game);

/* WARNING: contents of game NOT address of struct */



Wopr: additional functions

gets(char *string) # No system calls allowed

puts(char *string) # No system calls allowed

strcasecmp(char *s1, char *s2)

# -1:s1<s2; 0:s1==S2; 1:s1>s2



ANSI C Language function:  int puts(char *s) where
char *s is a pointer to a  string of bytes to be printed.

Puts prints each character until a null is encountered
(0x0a) in the string. A newline is then also printed to
the console.

Puts returns the number of characters written to the
console.

ANSI C Language function: char *gets(char *s) where
char *s is a pointer to a pre-allocated string of bytes.

Gets returns the original pointer *s passed in.

Gets inputs each character and echos it until a newline
is encountered (0x0a). The newline is not saved in the
final string. The returned string is null terminated.

ANSI C: gets and puts



Rx: Memory Mapped char i/o (Appendix A-36)

Receiver control status: memory address 0xffff0000
Unused Ready Bit

IF Ready bit is true THEN there is a new data character

Receiver data: memory address 0xffff0004
Unused    byte

Rx: li $t0,0xffff0000

lw $t1,0($t0) #get rx status

andi$t1,0x0001 #ready?

beq $t1,$zero,Rx #no

lbu $v0,4($t0) #yes - get byte



Tx: Memory Mapped character i/o

Transmitter control status: memory address 0xffff0008
Unused Ready Bit

IF Tx Ready bit is true THEN ok to output a character

Transmitter data: memory address 0xffff000c
Unused    byte

Tx: li $t0,0xffff0008

lw $t1,0($t0) #get tx status

andi$t1,0x0001 #ready?

beq $t1,$zero,Tx #no

stb $a0,4($t0) #yes - put byte



#Make sure -mapped_io is enabled on spim

rx_line:
 la $s0, rx_buffer #string pointer

li $t1, 0xffff0000
rx_line1:

lw $t2,0($t1) # ready?
andi $t2,$t2,1
beq $t2,$0,rx_line1 #no - loop

lbu $t2,4($t1) #yes - get char
sb $t2,0($s0) #..store it

addi $t2,$t2,-10 #carrage return?
beq $t2,$0,rx_done #yes - make it zero
addi $s0,$s0,1 #next string addr
j rx_line1

Rx_line: Read a line from the console.



Sun Microsystems SPARC Architecture

• In 1987, Sun Microsystems introduced a 32-bit RISC
architecture called SPARC.

•  Sun’s UltraSparc workstations use this architecture.

• The general purpose registers are 32 bits, as are
memory addresses.

• Thus 232 bytes can be addressed.

• In addition, instructions are all 32 bits long.

• SPARC instructions support a variety of integer data
types from single bytes to double words (eight bytes)
and a variety of different precision floating-point types.



SPARC Registers

•The SPARC provides access to 32 registers
•   regs 0  %g0 ! global constant 0 (MIPS $zero, $0)
•   regs 1-7  %g1-%g7 ! global registers
•   regs 8-15  %o0-%o7 ! out (MIPS $a0-$a3,$v0-$v1,$ra)
•   regs 16-23 %L0-%L7 ! local (MIPS $s0-$s7)
•   regs 24-31 %i0-%i7 ! in registers (caller’s out regs)

• The global registers refer to the same set of physical registers in
all procedures.
• Register 15 (%o7) is used by the call instruction to hold the
return address during procedure calls (MIPS ($ra)).
• The other registers are stored in a register stack that provides
the ability to manipulate register windows.
• The local registers are only accessible to the current procedure.



SPARC Register windows

• When a procedure is called, parameters are passed in the out
registers and the register window is shifted 16 registers further
into the register stack.
• This makes the in registers of the called procedure the same as
the out registers of the calling procedure.
• in registers:  arguments from caller (MIPS %a0-$a3)
• out registers: When the procedure returns the caller can access
the returned values in its out registers (MIPS $v0-%v1).



SPARC instructions

Arithmetic
add %l1, %i2, %l4 ! local %l4 = %l1 + i2
add %l4, 4, %l4 ! Increment %l4 by four.
mov 5, %l1 ! %l1 = 5

Data Transfer
ld [%l0], %l1 ! %l1 = Mem[%l0]
ld [%l0+4], %l1 ! %l1 = Mem[%l0+4]
st %l1, [%l0+12] ! Mem[%l0+l2]= %l1

Conditional
cmp %l1, %l4 ! Compare and set condition codes.
bg  L2 ! Branch to label L2 if %l1 > %l4
nop            ! Do nothing in the delay slot.



SPARC functions

Calling functions
mov %l1, %o0       ! first parameter = %l1
mov %l2, %o1       ! second parameter = %l2
call fib     ! %o0=.fib(%o0,%o1,…%o7)
nop                ! delay slot: no op
mov %o0, %l3       ! %i3 = return value

Assembler
gcc hello.s   ! executable file=a.out
gcc hello.s -o hello  ! executable file=hello
gdb hello             ! GNU debugger



SPARC Hello, World.

.data
hmes:.asciz Hello, World\n"

.text

.global main ! visible outside
main:

add  %r0,1,%%o0 ! %r8 is %o0, first arg
sethi %hi(hmes),%o1 ! %r9, (%o1) second arg
or  %o1, %lo(hmes),%o1
or  %r0,14,%o2 ! count in third arg
add  %r0,4,%g1 ! system call number 4
ta 0 ! call the kernal

add  %r0,%r0,%o0
add  %r0,1,%g1 ! %r1, system call
ta 0 ! call the system exit



gdb: GNU debugger basics

This is the symbolic debugger for the gcc compiler. So keep all your source files
and executables in the same current working directory.

gcc  hello.s         Assemble the program hello.s and put the executable
in a.out (all files that end in “.s” are assembly files).

gdb a.out              Start the debugger and read the a.out file.

h                      gdb Help command: lists all the command groups.

info files shows the program memory layout (.text, .data, …)

info var shows global and static variables ( _start )

b   _start set the first breakpoint at beginning of program

info break displays your current breakpoints

r Start running your program and it will stop at _start



gdb: register & memory contents

info reg displays the registers

set $L1=0x123 set the register %L1 to 0x123

display $L1 display register %L1 after every single step

info display show all display numbers

undisplay <number>   stop displaying item <number>

diss 0x120  0x200 dissassemble memory location 0x120 to 0x200

x/b 0x120 display memory location 0x120 as a byte
x/4b 0x120 display memory location 0x120 as four bytes
x/4c 0x120 display memory location 0x120 as four characters
x/s 0x120 display memory location 0x120 as a asciiz string
x/h 0x120 display memory location 0x120 as a halfword
x/w 0x120 display memory location 0x120 as a word



gdb: single stepping

si Single step exactly one instruction

n Single step a single source line but do NOT enter the
subroutine.

b *0x2064 This sets a Breakpoint in your program at address 0x2064.
Set as many as you need.

info break Display all the breakpoints

c       Continue running the program until the next breakpoint.
Set more breakpoints or do more “si” or restart program “r”

d            Delete all break points.

set args <command_line_args>   set the args which are passed to argv & argc

q                      Quit debugging.



RISC Project: Due last day of lecture

100 points:
Objective: learn structures, pointer, & RISC architecture.

(1) MIPS & C for “reverse TicTacToe” (as explained earlier)

10 points: in class demo before Last Lecture. Limited number of
openings. Earlier the better. Must ask beforehand.

50 points: Objective: learn alternative RISC architecture.

(1) Sun SPARC “reverse TicTacToe”

(2) Can only use kernal calls: “ta 0”

(4) Detailed flowchart of get_move( ) function.

(3) Detailed write up of SPARC instruction binary formats,
syntax & semantics, and explain SPARC architecture.



Reverse Tic-Tac-Toe: http://tictactoe.javagamz.com/toetactic.html Tic-Tac-Toe history: http://home.capecod.net/~pbaum/ttt/intro.htm

Movie References: http://www.imsai.net/Movies/WarGames.htm http://www-public.rz.uni-duesseldorf.de/~ritterd/wargames/pix.htm

Technical SPARC CPU resources: http://www.users.qwest.net/~eballen1/sparc.tech.links.html  http://www.sunfreeware.com


