@Instructor Francis G Wolff

wolff@eecs C\\LLL edu

eé"tern Reserve Unlver3|t
—Mon uses power ase VIeWShOW

EDSAC 1949: the first computer

Designed and built at Cambridge
University, England, the EDSAC is
the first full-scale operational
stored-program computer, and is
therefore the final candidate for the
title of "the first computer".

The EDSAC performed its first
calculation on May 6, 1949, when a
length of perforated paper tape was
threaded through the tape reader
connected to the machine, and a few seconds later, the computer's printer
began clattering out a list of numbers: 1, 4, 9, 16, 25, 36....

EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.html

EDSAC: subroutines, relocatable, BIOS

* Indeed, EDSAC could access a library of programs called (would-you-
believe) subroutines,

e including what was thought impossible at the time: a subroutine for
numerical integration which (by calling an "auxiliary" subroutine) could
be written without knowledge of the function to be integrated! (pass the
by address of another function to a subroutine)

« A problem: whenever a tape was read the subroutine may not go to the
same memory locations so certain memory addresses had to be changed.
This problem was overcome by preceding each piece of code with a set
of "coordinating orders", making it self-relocatable.

» The next major advance demonstrated by this machine, was a
continuation of EDSAC’s subroutine idea. The concept of a bootstrap
was Invented - a program that is run every time the machine is turned on.
Today, we call that shadow ROM BIOS.

EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.htmi

EDSAC architecture

CONTROL

B seq Confrol

* Crder Tank

ALU

ultiplier

Multiplicand

ACc.
I

Lhpm
1alll

phar o hER-l -
o O

o LECTE g T
[T AT

11 Typical execution times were

1.5 milliseconds for the simple

commands = 667 adds/sec

STORE
INPUT OUTPUT
1024 words of 18 bits each
5 1 10
Opcode Spare Address Length
16 i
Sandwich
Sign digit
16

4.5 milliseconds for a
multiply = 222 mults/sec

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/simulators/echo/refindex.html

EDSAC memory

Its main memory is of a type that had existed
for some years, but had not been used for a
computing machine: the "ultrasonic delay
line" memory.

It had been invented originally by William
Shockley of Bell Labs (also one of the co-
Inventors of the transistor, in 1948), and
Presper Eckert had made an improved version
In connection with radar systems.

The "delay storage" referred to an
electromechanical delay line: oscillating
quartz crystals generated pulses in tubes of
mercury and the pulses were recycled to
provide memory.

In place of mercury, Turing suggested gin and JR T i
tonic because the speed of propagation was ¥
relatively insensitive to temperature changes!

http://kbs.cs.tu-berlin.de/~jutta/time/msb-chronology-of-dcm.html ']
http://home.golden.net/~pjponzo/CSH.htm Memory Store: Mercury Delay Tanks

EDSAC memory: FIFOs

/- CQuartz crystal -——\\
=
/ Hg Z

Y

Gate
Reshaper Amplifier -
Write Control Read
line line line
READ | WHITE FI:EPHE.I_LE.T.I.._ E
READ SELESY | i GCR1 [oomi
WRITE SELECT |0 ofty ¥ o
DATR IRPUT [30RY | &OR1 RORy
e ename] 1 | 1 | oom

ROCIRCULATE PATH

|___| DEL&Y AMPL
ORIER LINE FIER AND = DATA OUTPUT

READ SELECT
WRITE SELECT l.'lﬂ EHABLE

Fr. 2.1.1. Delay line memery block diagram.

http://www.science.uva.nl/faculteit/museum/delayline.html

Memory Store: Mercury Delay Tanks

EDSAC Description

System Clock: 0.5 Mhz
Arithmetic: No overflow or carry bit. Serial +, —, x and &
Registers: A=71 bits, multiplier H=35 bits, PC=10 bits, IR=15bits.

Better than a 32 bit processor!
One Instruction format: Opcode,g ,, Spare,; Address,, , Length,
Input/Output Paper tape, Printer, 0-9 telephone dial, 16x36 video
Memory organization: 1024 words (i.e. about 2 kilobytes)
= 32 mercury tanks containing 32 18-bit words

Boot strap loader: Hardwired circuit fills first tank with 31 instructions
Today, we call that shadow ROM BIOS
Short word: Mem[n] =Mem[n],5 ; (Bit O is always lost, can only use 17 bits)

Long word: Memg; ;[n+1] =Mem[n+1];g o|| Mem[n];q ;
Serial Memory: can run two adjacent memory location together
Technology: 3500 Tubes

Ref: The Origins of Digital Computers, Brian Randell, 1975, 2nd, Springer-Verlag

EDSAC CPU

. mann
BER T EEE]

ALARRADN R0
e

Ill‘:: I.I 1 I I‘l 1]

IJ:'_-l"l"l'r|
| i

Ref: http://www.dcs.warwick.ac.uk/~edsac

EDSAC /O

'ﬂ'-lq--pn““ &+
‘4_ LT L0 .

mf L *-.— ittt ey = L L]

e LT

i

[
o

=
-
-
- .
Lo
{;-
L
E
-
ol F -
-

Che University Mathematical Laboratory. Cambridge

May. [1950:

N |
)

3 :‘-' *nm-.ﬁ;m s ..._.'i'

- S -

FdFormer LForiman SA Barton GuJStewns RKimpton $6ill EChamberlain
DRWillis KNDodd MEllison BRVernon H.Pye CMBeech RBBonham-Carter AE.Glennic DJWhacler
EECMcKa JMBenmctt Whenwick MVWilkes ENMutch RA Prooker M. Mumford

(Absent — BMWorsley 0aN.Hunter)

EDSAC Instructions (formally called orders)

Instruction

AnS Azo.0 = Agp.0 T Mem[n],g 4[|0s, 4
AnlL Azo.0 = Asp.0 T Mem[n+1]55 4][055
Anw Az0.0 = Azo.0 + Mem.w[n]

Snw Az0.0 = Azo.0 — Mem.w[n]

RnS Az0.0 = A0 >> N

LnS Az0.0 = A0 <<

Cnw Az0.0 = Azo.0 & Mem.w[n]

Hnw H., o = Mem.w[n]

Vnw Az0.0 = Az t Hzy o*Mem.wn]
NnS Az0.0 = Azg.0 — Has o*Mem.win]

EDSAC Instructions (i.e. orders)

Instruction

TnsS Mem[nlig 1 = A .53 Azo.070;

TnlL Mem[n+1]ss 1 = Azg 367 Aso.0 =0;

UnsS Mem[n];s ; = Az 53

UnlL Mem[n+1]55 1 = Az 36;

EnS PCy o =(A>=0)?n: PCy ,+1;

GnS PCy; ;= (A<0)? n: PCy ,+1;

ZS Stop the machine and ring the warning bell

InS Mem|n],; ,, = Paper Tape Reader

OnS Printer = Mem[n],5 ;4 (print character in opcode position)

FnS Mem[n],; ,, = Printer character buffer

EDSAC 1952 Tic-Tac-Toe program

o= Edzac [_ []]

Qutput From: Squares

1 1 1 -

z 4 2

3) 5

4 16 7

5 2L)

3 26 11

7 49 13

= 64 15 Fras

e 81 17 ~ |

Clear| Heset|

Start | Stop |
SMQH:EJﬂ

v SCR Emsrssswerwrwrrs Order Tank -
' ' s LongTank |0
IEEEETTTTTTTTIYTTTTTTTTTTTSTSTITYISITYN Multiplier g Z‘
Cssssssssssssssssssssssssseen Multiplicand W Short Tanks

‘DLaﬁmm 1 Kb) . TThe boax wilk a 'nuucjht

Lh ru& MCLDYL 9 .

16 by 36 memory mapped monochrome (1-bit) video

Each memory bit corresponds to a pixel (picture element) on the display

The EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac

Ref: http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

EDSAC instruction comparison

Modern computers provide instructions for
call: jal address
return: jr $ra

iIndexing: Iw $rt, $offset($rs)

The EDVAC achieved this through self modifying code
At the time, the Von Neuman architecture was view as vital

(i.e. instructions and data are contained in the same memory)

For example: suppose loads on the MIPS could not add a base register

How would we do: lw $3,0ffset($1)
32: addi $2,%1,offset #add offset plus base
36: sh $2,42(%$0) #store within lw instruction

40: lw $3,0(%$0)

EDSAC Hello, World

31: T53S # A=0; last line of code +1 for loader 41: *S #letter shift
32: 0O41S # Printer = Mem[41..52] 42: HS
33: A32S # A=A+Mem[32]; get instruction at 32 || | 43: ES
34 A39S # A=A+2; add 1 to address field 44 LS
35: U32S # Mem[32]=A; store new instruction 45: LS
36: S40S # A=A-"0O53S”; stop output? 46: OS
37. G31S #if (A<0) then no and goto 31 47.'S #blank
38: ZS # stop machine and ring the bell 48: WS
39: P1S # use instruction to define word =2 49: OS
40: O53S # use instr. to compare last index 50: RS
51: LS
Note that the letter code and opcode as the same 52: DS
Simplifies loader (loader acted as an assembler too!)
11100 = ‘A’ = Add opcode

Note that the letter code and opcode as the same

5 for data

g larger hﬂ'ﬁ‘ﬂ% Actual paper tape source input (load for initial orders 1)

“5°° small holes
o clock track

T53S041SA32SA39SU325S40SG31SZSP1S053S

*SHSESLSLSOSISWSOSRSLSDS

EDSAC versus the EDVAC: battle of being the first

Before von Neumann, computer programs were stored either
mechanically (on cards or even by wires that connected a matrix of
points together in a special pattern like ENIAC) or in separate memories
from the data used by the program.

Von Neumann introduced the concept of the stored program—~both the
program that specifies what operations are to be carried out and the data
used by the program are stored in the same memory.

Although EDVAC is generally regarded as the first stored program
computer, Randell states that this is not strictly true [Randell94].
EDVAC did indeed store data and instructions in the same memory, but
data and instructions did not have a common format and were not
Interchangeable.

Sadly, EDVAC was not a great success in practical terms. Its
construction was (largely) completed by April 1949, but it did not run its
first applications program until October 1951. (EDSAC was 1949)

Ref: http://wheelie.tees.ac.uk/users/a.clements/History/History.htm

Turing machine ?I1Imlmlﬂloluh|c}|1|1|1|L[§D|1|1|1I1I1I1I1IDIDI1I{

A Turing machine (TM) typically works as follows:
1. Read the input symbol from the tape.

2. Choose the next operation found in the state transition table
(i.e. FSM), based upon the current state, and the input symbol.

3. Write the output symbol indicated in the matrix cell.
4. Transform into the next state indicated in the matrix cell.
5. Move the tape pointer in the direction indicated in the matrix cell.

6. If the next state is not H, the Halt state, start the instruction loop at
the top.

- - mections may contain wtate | Read | Write | Move | Next State
Turing Machine 1 orQ, orbe blarlk
. 51 0 0 L 51
Infinitely extendable tape blank 1 L -
~ 1 blank R 51
K. e 0 1 R e
Tape head, looks at blank 0 R 52
one section at a time 1 1 L 51

State Transition Table for a Turing Machine

EDSAC versus the Turing machine

A Turing machine is a very simple machine, but, logically speaking, has
all the power of any digital computer. It may be described as follows: A
Turing machine processes an infinite tape whereas a digital computer
processes a finite tape.

State | Read | Write | Move Next State
- - Sections may contain
Turing Machine 1 or O, orbe blank 51 0 0 L 51
blank 1 L a2
Infinitely extendable tape 1 blank R g1
52 0 1 R a2
blank 0 R N2
Tape head, looks at 1 1 L 51

one section at a time

State Transition Table for a Turing Machine

@ N
: State
Universal o
Turing Tra'nsmun @
Machine Diagram .
[| . .
Turing Machine ‘/’/@
Description @ @,_/-/'®
Infinite Tape | ~ J

?1DDDDD1E}111ED1111111DD1{“—

EDVAC architecture comparison

EDVAC differs from the modern computers of today:
CPU: Serial ALU to parallel & multiple ALUs and pipelining
Registers: Serial 71 bit accumulator to 64bit parallel & multiple registers
Memory: Serial Mercury Delay Tubes to parallel DRAM CMOS
Single-level memory to multi-level: Disk, RAM, L2, L1 cache
Input: Paper tape to keyboards, mouse, scanners, cdroms, ...

Output: Teletype printer and a bell to 24-bit video, 16-bit sound,

The key design components

parallelism: achieved though architecture
switching delay: achieved through technology (silicon)
area: vacuum tubes to silicon

power: vacuum tubes to silicon

cost: mass manufacturing, marketing & sales

Intel Microprocessor History: 4004

e 1971 Intel 4004, 4-bit, 0.74 Mhz, 16 plns
2250 Transistors FrE

 Intel publicly introduced the world’s first single chip
microprocessor: U. S. Patent #3,821,715.

* Intel took the integrated circuit one step further, by placing
CPU, registers, memory access, 1/0 on a single chip

Intel Microprocessor History: 8080

e 1974 Intel 8080, 8-hit, 2 Mhz, 40 p}ins,
4500 Transistors |

-

Bill Gates & Paul Allen

write their first Microsoft software
product: Basic

Intel Processor History: Penitum Pro

e 1995 Intel Pentium Pro, 32-bit ,200 Mhz internal clock, 66
Mhz external, Superpipelining, 16Kb L1 cache, 256Kb L2
cache, 387 pins, 5.5 Million Transistors

Inmftel's Moo procesSs.sor
ewoluautiom

silicon process
tech = L T .Smgy T.OR O.Egy OuSp O @SSy Oo=ssg

FeervhbioarvyEr

P s eSS - - -
Il BSaT™™ D00 . .
I =S S

——l
Proosc eSS r

[gl =1 Lice
FPeerativarm & 11
PO e S SOl S

FerrhhoarreEr 1

Faerthiuurmyil®E PPe-aoe
PO e S S

RISC Project

Each team must turn in a report which contains the following
(1) Cover sheet with up to 3 team members names & signatures
(2) Description of the problem, enhancements, & lessons learned.

(3) (a) Comment “# C source code statements” followed by MIPS
assembler source related it. (b) Also, comment each “# assembler
source” statement. (c) Must use at least the given functions & data
structure described later.

(4) Flowchart of the function: game_move()
(5) Floppy disk of the (1)-(3).
(6) Demo with all members present with TA asking questions.

Note: you will get no credit by just handing in C code!

Wopr: example

How the program should work
Wopr

Shall we play a gane?
d obal thernonucl ear \War

Woul dn’t you pref erf a
good gane of toe-tlac-tic?

toe-tAc-Tic
o/ur nove?

Strcasecmp()
Case
insensitive
string matching

X. pl ease en

Wopr: con't

X: please enter your nove?

X
e E
O| O
e E
X

X: please enter your nove?|

Wopr: con't

X. please enter your nove-

X O
N E

O| O] X
e E

X|] X]| O

Draw. Gane over.

Shall we play a gane?
Li st Ganes

1.) Toe-Tac-Tic

2.) logoff.

Shall we play a gane?
| ogof f

| ogof f.

Wopr: Reverse Tic-Tac-Toe

RISC Project:
wopr: this program is inspired by the movie, wargames.

Toe-tac-tic: Reverse Tic-Tac-Toe

Object of the game:

Avoid getting three marks in a row (the opposite of tic tac toe)
The play stops when a player gets 3 in a row (loses) or a draw.

For example see: http://tictactoe.javagamz.com/toetactic.html

Wopr: functions (see Appendix A & A-22)

Write at least these functions (using MIPS reqister conventions):

mai n()
Main program: reads keyboard for “logoff”,
“toe-tic-tac” and calls TICTACTOE;

voi d gane_print(struct TICTACTOE *gane) ;

prints the tic-tac-toe board (player: 1=0, 2=X, O=blank)
also prints status only if win or draw

void ganme_init(struct TICTACTCE *gane);
Initializes the data structure board to blank

I nt gane_set (struct TICTACTCE *gane, position);
sets & checks for valid move for current player

voi d gane_nove(struct TICTACTOE *gane);
generates the computers move for current player

| nt ganme_check(struct TICTACTCE *gane) ;

test and sets the game status flag to draw or win
return 1 if game over and return to main(); else return 0

list games”,

Wopr: data structure

struct TICTACTCE {

si gned char *board;
short current _player; /* 1=0 2=X */
short status;

[/ * -1=pendi ng, O=dr aw, 1=pl ayer w ns, 2=pl ayer wins */

'

game_toetictac() {
struct TI CTACTCE t oetacti c;
struct TICTACTCE *gane = &toetactic;
char boar d9x9[9] ;
game- >pboard = boar d9x9;
game_i1nit(gane);
/[* WARNI NG contents of gane NOI address of struct */

Wopr: additional functions

gets(char *string) # No system calls allowed
puts(char *string) # No system calls allowed

strcasecnp(char *sl1, char *s2)
#-1.51<s2; 0:51==52; 1:s1>s?2

ANSI C: gets and puts

ANSI C Language function: char *gets(char *s) where
char *s is a pointer to a pre-allocated string of bytes.

Gets returns the original pointer *s passed in.

Gets inputs each character and echos it until a newline
IS encountered (Ox0a). The newline is not saved in the
final string. The returned string is null terminated.

ANSI C Language function: int puts(char *s) where
char *s Is a pointer to a string of bytes to be printed.

Puts prints each character until a null is encountered
(Ox0a) in the string. A newline is then also printed to
the console.

Puts returns the number of characters written to the
console.

Rx: Memory Mapped char i/o (Appendix A-36)

IF Ready bit is true THEN there IS a new data character

Receiver control status: memory address 0xffffO000
Ready Bit

Receiver data: memory address 0xffff0004

byte
Rx: i $t0O, Oxffff0O00O0
lw $t1, 0($t0) #get rx status
andi $t 1, 0x0001 #r eady?
beqg $t1, $zero, Rx #no

| bu $vO, 4($t 0) #yes - get byte

Tx: Memory Mapped character i/o

———— e
e——————

IF Tx Ready bit is true THEN ok to output a character

Transmitter control status: memory address 0xffffO008

Ready Bit

Transmitter data: memory address 0xffffO00c

Tx: i $t0, OxffffO0O08
lw $t1, 0($t0) #get tx status
andi $t 1, 0x0001 #r eady?
beq $t1, $zero, TX #no

stb $a0, 4($t 0) #yes - put byte

Rx line: Read a line from the console.

#Make sure -nmapped 10 is enabled on spim

rx_|ine:

la $s0, rx_buffer #string pointer
| | $t1, Oxffff0o00O
rx_|inel:
lw $t2,0(%t1) # ready?
andi $t2,%t2,1
beqg $t2,%0,rx linel #no - | oop
lbu $t2,4($t1) #yes - get char
sb $t2, 0($s0) #..store it
addi $t2,$t2,-10 #carrage return?
beqg $t2,$0,rx _done #yes - nmake it zero
addi $s0, $s0, 1 #next string addr

] rx_linel

Sun Microsystems SPARC Architecture

e |n 1987, Sun Microsystems introduced a 32-bit RISC
architecture called SPARC.

e Sun’s UltraSparc workstations use this architecture.

* The general purpose registers are 32 bits, as are
memory addresses.

* Thus 232 bytes can be addressed.
 |n addition, instructions are all 32 bits long.

« SPARC Instructions support a variety of integer data
types from single bytes to double words (eight bytes)
and a variety of different precision floating-point types.

SPARC Registers

*The SPARC provides access to 32 registers

e regsO %090 I global constant O (MIPS $zero, $0)
e regs 1-7 %gl-%g7 ! global registers

* regs 8-15 %00-%07 !out (MIPS $a0-$a3,$v0-$v1,$ra)
e regs 16-23 %L0-%L7 !local (MIPS $s0-$s7)

e regs 24-31 %i0-%i7 l'In registers (caller’s out regs)

* The global registers refer to the same set of physical registers in
all procedures.

* Register 15 (%07) is used by the call instruction to hold the
return address during procedure calls (MIPS ($ra)).

e The other registers are stored in a register stack that provides
the ability to manipulate register windows.

* The local registers are only accessible to the current procedure.

SPARC Register windows

Femster
window
£
calhng
procedure

Eemster
w1ndows
£
called

procedure

¥

TDirechon Clobal=

remster
stack
mrowth

 When a procedure is called, parameters are passed in the out
registers and the register window is shifted 16 registers further
Into the register stack.

e This makes the in registers of the called procedure the same as
the out registers of the calling procedure.

* in registers: arguments from caller (MIPS %a0-%$a3)

 out registers: When the procedure returns the caller can access
the returned values in its out registers (MIPS $v0-%v1).

SPARC instructions

Arithmetic
add %1, %2, %4 local %4 = %1 + 12
add %4, 4, %4 | ncrenent % 4 by four.
nov 5, %1 l %1 =5

Data Transfer

ld [%0], %1 1 %1 = Menf % O]

ld [%0+4], %1 1 %1 = Menf % O+4]

st %1, [%0+12] L Menm]{ % O+l 2] = % 1
Conditional
cnp %1, %4 I Conpare and set condition codes.
bg L2 l Branch to label L2 if %1 > %4

nop ' Do nothing in the delay slot.

SPARC functions

Calling functions
mv %1, %0
nmov %2, %1
call fib
nop
mov %90, % 3

Assembler

gcc hello.s !
gcc hello.s -0 hello !
gdb hello !

first paraneter = % 1
second paranmeter = % 2
%0=.fi b(%0, @1, .%7)
delay slot: no op
%3 = return val ue

execut abl e fil e=a. out
executable file=hello
GNU debugger

SPARC Hello, World.

.data
hnes:.asciz Hello, Wrld\n"
.text
. gl obal main l visible outside
mal n:
add % 0, 1, 800 l %8 1s %90, first arg

sethi %i (hnes), %1 ! %9, (%1l) second arg
or %01, % o(hnes), %@1

or % 0, 14, Y02 l count I1n third arg
add % 0, 4, %g1 l systemcall nunber 4
ta O l call the kernal

add % 0, % 0, %00
add %0, 1, %91 l %1, systemcall
ta O l call the systemexit

gdb: GNU debugger basics

This is the symbolic debugger for the gcc compiler. So keep all your source files
and executables in the same current working directory.

gcc hello.s Assemble the program hello.s and put the executable
In a.out (all files that end in “.s” are assembly files).

gdb a.out Start the debugger and read the a.out file.

h gdb Help command: lists all the command groups.
info files shows the program memory layout (.text, .data, ...)
info var shows global and static variables (_start)

b _start set the first breakpoint at beginning of program
Info break displays your current breakpoints

r Start running your program and it will stop at _start

gdb: register & memory contents

Info reg

set $L1=0x123

display

$L1

Info display

undisplay <number>

diss 0x120 0x200

X/b
X/4b
Xl4c
X/s
x/h
X/w

0x120
0x120
0x120
0x120
0x120
0x120

displays the registers

set the register %L1 to 0x123

display register %L1 after every single step

show all display numbers

stop displaying item <number>

dissassemble memory location 0x120 to 0x200
display memory location 0x120 as a byte

display memory location 0x120 as four bytes
display memory location 0x120 as four characters
display memory location 0x120 as a asciiz string

display memory location 0x120 as a halfword
display memory location 0x120 as a word

gdb: single stepping

Si Single step exactly one instruction
n Single step a single source line but do NOT enter the
subroutine.

b *0x2064 This sets a Breakpoint in your program at address 0x2064.
Set as many as you need.

Info break Display all the breakpoints

C Continue running the program until the next breakpoint.
Set more breakpoints or do more “si” or restart program “r”

d Delete all break points.

set args <command_line _args> set the args which are passed to argv & argc

g Quit debugging.

RISC Project: Due last day of lecture

100 points:
Objective: learn structures, pointer, & RISC architecture.

(1) MIPS & C for “reverse TicTacToe” (as explained earlier)

10 points: in class demo before Last Lecture. Limited number of
openings. Earlier the better. Must ask beforehand.

50 points: Objective: learn alternative RISC architecture.
(1) Sun SPARC “reverse TicTacToe”

(2) Can only use kernal calls: “ta 0"

(4) Detailed flowchart of get_move() function.

(3) Detailed write up of SPARC instruction binary formats,
syntax & semantics, and explain SPARC architecture.

Reverse Tic-Tac-Toe: http://tictactoe.javagamz.com/toetactic.htmi Tic-Tac-Toe history: http://home.capecod.net/~pbaum/ttt/intro.htm

Movie References: http://www.imsai.net/Movies/WarGames.htm http://www-public.rz.uni-duesseldorf.de/~ritterd/wargames/pix.htm

Technical SPARC CPU resources: http://www.users.qwest.net/~eballenl1/sparc.tech.links.html http://www.sunfreeware.com

