lastructor: Francis G. Wolff

<o |if @eecs cwru.edu

Case Western w
gresentation uses powerpoint animation: plea

S P E C 2 OO O F A Q Reference: http://www.specbench.org/

-{Vhat is SPEC CPU20007 = <

* A non-profit group that includes computer vendors, systems
Integrators, universities and consultants from around the world.

e What do CINT2000 and CFP2000 measure?

e Being compute-intensive benchmarks, they measure
performance of the

e (1) computer's processor,
e (2) memory architecture and
e (3) compiler.

e It Is Important to remember the contribution of the latter two
components -- performance is more than just the processor.

e What Is not measured?

e The CINT2000 and CFP2000 benchmarks do not stress:
/O (disk drives), networking or araphiCS cWRUEECS 314 2

SPECIint2000 (Number of processors = 1)

P

e Company System

Intel VC820

SGlI SGI 2200 2X

Intel SE440BX-2

Intel SE440BX-2

e« SGI Origin200

Dell Precision Ws 330

Dell Precision Ws 330

Clock, CPU

1.50 GHz P4

1.40 GHz P4
1.13 GHz P3

400MHz R12k

800 MHz P3

/50 MHz P3

360MHz R12k

o -

SPEC _LZ caché

526 256KB (1+D)
505 256KB(I+D)
464 256KB(I+D)

347 8M(I+D)

344 256KB(I+D)
330 256KB(I+D)
208 AM(1+D)

‘- Pitfall: Using MIPS or Clock speed as performance metric I
3

Dgom benchmark results

Reference: http://www.complang.tuwien.ac.at/misc/doombench.html
Doom,Quake games: http://www.idsoftware.com

——]

"The Doom benchmark is more important than SPEC"
(paraphrased) John Hennessy in his plenary talk at FCRC '99.

avg.

f ps

304.
201.
197.
196.
190.
188.

01 O b © W

Pr ocessor

M PS R4400- 250
Pentium || E-800
Pentiunll | E-787
M PS R10000- 195
Pentium || -644
Pentiunll1-800

L1
Cache
16+16k
16+16K
16+16K
32+32k
16+16K
16+16K

Mot her

Board

SA 1 ndi go2
ASUS P3B- F
Abit BH6RI1. 01
SA 1 ndi go2
Abit BX6 2,0
ASUS CUAVX

Wow! 250 Mhz MIPS beats the 800 Mhz Pentium.

avg. fps The average number of video frames per second

CWRU EECS 314 4

B enc h mar k wars.: I N ter N e't Se rvers http://www.kegel.com/nt-linux-benchmarks.html

I —
Sm@rt Reseller's
January 1999 article,
“Linux Is The Web
Server’s Choice” said

| . i
"Linux with Apache o Fied Hat 5.2
=
&

% Caldera 1.3

beats NT 4.0 with [IS, ® SRS

hands down."

&0

70

&0

of S

20 &5 ® NT4.0
" 7

20

10

(i

4 i] 12 16 20 24 28 32
Mornber of clierts

In March 1999,
Microsoft
commissioned
Mindcraft to carry
out a comparison
between NT and
LinuxX.

Benchmark Wars: Linux/Solaris

PC Maqgazine, September 1999 Sun Microsystems
2D WEBBENCH 3.0 e SPARC architecture
e now jumps in!
Red Hat Linwe 6.012.2.10)/ LU
Apache 1.3.6 N :
- Solaris eclipses rivals in WebBench
B0 —— ris |)0 —]
M5 Windows NT Server 4.0/ i) o — NEI"-:E?rE 2.0 e
MS Internst Information Serear 4.0 . 6.000
o 5,000
w R
A 'E 5,000
1 i 4 2 B 20 i it i g 2,000
1,000
..found that NT did a lot more I}1 4 B 12 16 00 24 28 3 36 40 44 48 52 56 60
. - Client load
d [S k aC C eS S eS th an L 1N ux y In the WebBench test, which shows how fast a server can dish out
. . Web pages of varying sizes, Solaris and Windows NT performed
W h | C h | et L | n U X S C O re ab O u t eatremely well, with CPU cycles 1o spara. NetWare's performance
peterad oul between 36 and 40 clients, but overall it turned ina
5090 b etter t h an NT. strong parformance. Linux did not fare so well, mostly due to

limitations in Apache’s architecture. PC Week Labs had to move to
the Linux 2.2.7 prekernal to get any decent numbers out of Apache;
with the new kernel and some “topfuel” patches, it provided enough
performance to consume most companies’ bandwidth.

Fests rm on WebBenoh J.0L

Performance

&

To maximize performance,

we want to minimize response time or execution time

Performance = 1
Execution time

To compare the relative performance, n,
between machine X and Y, we use

Performance, Execution time,

=n
Performance, Execution time,

CWRU EECS 314 7

Measuring Performance

Total program clock cycles executed

Execution time =
Clock frequency rate (MHz)

Total program instructions exec x CPI

Clock frequency rate (MHz)

CPIl = Average number of clock cycles per instruction

Clock cycle time (us) = 1
Clock frequency rate (Mhz)

CWRU EECS 314 8

CPIl Example
7 T e

Given the following instruction class execution times:

alu=6ns, loads=8ns, stores=7ns, branches=5ns, jumps=2ns

CPIl = (6bns+8ns+7/ns+5ns+2ns)/5 = 28/5 =5.6 ns

= (0.2*6ns+0.2*8ns+0.2*7ns+0.2*5ns+0.2*2ns) = 5.6 ns

Given the following instruction class execution times:
alu=60%, loads=20%, stores=10%, branches=5%, jumps=5%

alu=6ns, loads=8ns, stores=7ns, branches=5ns, jumps=2ns

CPIl = (0.6*6ns+0.2*8ns+0.1*7ns+0.05*5ns+0.05*2ns) = 6.25

CWRUEECS 314 9

Performance example (PH page 64)

@ e —
Benchmark A B L Total Instruction class CPI
1 2 1 2 = ALU 1
2 4 1 1 = Branches 2

Load/Stores 3

Total CPU cycles; = (2xA) + (1xB) + (2xL)
= (2x1) + (1x2) + (2x3) = 10 cycles

CPIl, =10 cycles/5 = 2 average cycles per instruction

Total CPU cycles, = (4x1) + (1x2) + (1x3) = 9 cycles

CPIl, =9 cycles/6 = 1.5 average cycles per instruction

e Benchmark 2 executed more instructions, but was faster.
CWRU EECS 314 10

MIPS Performance example (PH page 78)

@ e —
Benchmark A B L Total Instruction class CPI
Compiler 1 5x10° 10° 10° =7x10° §ALU 1
Compiler 2 10 10° 10° =12x10° || Branches 2
Load/Stores 3

Total CPU cycles,; =(5xA) + (1xB) + (1xL) = 10x10° cycles
Execution time; = 10x10° cycles/500Mhz = 20 seconds
CPIl, =10x10° cycles/ 7x10° = 1.43 '\
MIPS; = Clock rate/CPIl = 500Mhz/1.43 = 350 MIPS

Total CPU cycles, = (10xA)+(1xB)+(1xL) = 15x10° cycles /
Execution time, = 15x10° cycles/500Mhz = 30 seconds
CPI, = 15x10° cycles/12x10°=1.25 MIPS,= 500Mhz/1.25 = 400 MIPS

Although MIPS, > MIPS, but execution time is unexpected! = .

Agdahl’s Law (the law of dimishing returns) _
Execution Time After Improvement _
= Execution Time Unaffected

+ (Execution Time Affected / Amount of Improvement)

Example:

"Suppose a program runs in 100 seconds on a machine,
with multiply responsible for 80 seconds of this time.

How much do we have to improve the speed of multiplication
If we want the program to run 4 times faster?"

How about making it 5 times faster?

Principle: Make the common case fast
Well, let’s speed up the multiply!

CWRU EECS 314 12

Amdahl’'s Law (the law of dimishing returns)

Execution Time After Improvement =
(Execution Time Affected / Amount of Improvement)
+ Execution Time Unaffected

Let Execution Time After Improvement be
old time / speed up =
100 seconds / 5 times faster = 20 seconds =

Execution Time needed
= 80 seconds/n + (100-80 seconds)

Equating both sides
20 = 80 seconds/n + (100-80 seconds)
0 =80 seconds/n

No amount of multiplier speed up can make a 5 fold increase
CWRU EECS 314 13

S&urces of improvement -

e For a given instruction set architecture,
e increases in CPU performance can come from three sources
e 1. Increase the clock rate
e 2. Improve the hardware organization that lower the CPI
e 3. Compiler enhancements that
e lower the instruction count or

e generate instructions with a lower average CPI

e In addition to the above, in order to improve CPU efficiency
of software benchmarks.

e Improve the software organization (data structures, ...)

CWRU EECS 314 14

ngormance Summary B

e Execution time is the only valid and unimpeachable

measure of performance.

« Any measure that summarizes performance should

reflect execution time.

e Designers must balance high-performance with low-cost.

e You should not always believe everything you read! Read

carefully! (see newspaper articles, e.g., Exercise 2.37)

CWRU EECS 314 15

