
CWRU EECS 314 1

"I think there is a world market for

maybe five computers.”

Thomas Watson, chairman of IBM, 1943

"I think there is a world market for

maybe five computers.”

Thomas Watson, chairman of IBM, 1943

EECS 314 Computer Architecture
Instructors: Professor Chris Papachristou & Francis G. Wolff

 wolff@eecs.cwru.edu
 Case Western Reserve University

This presentation uses powerpoint animation: please viewshow

CWRU EECS 314 2

Computer Architecture Trends: Post PC era

• 3 BILLION processors3 BILLION processors
were sold for embedded
systems

It’s expected that the
average car will be Internet
ready and have over $2000
worth of embedded
computers

• 100 million processors100 million processors
were sold for desktop
computers

CWRU EECS 314 3

Digital Pager Architecture

Two completely differently optimized
Instruction Set Architectures

Two completely differently optimized
Instruction Set Architectures

Why not just use an Intel Pentium instead?Why not just use an Intel Pentium instead?

Cost,
size,
power,
speed,
weight,
...

Cost,
size,
power,
speed,
weight,
...

CWRU EECS 314 4

• Smart cards differ from credit cards
in using onboard memory chips and
microprocessors or micro-controllers
instead of magnetic strips.

• There are currently 2.8 billion smart
cards in use:
• 575 million phone, 36 million
financial, 30 million ID cards, …

Smart Cards: Hardware/Software Co-Design

 Each chip can hold 100k times the
information contained on a
standard magnetic-stripe card.

CWRU EECS 314 5

Smart cards have
embedded within them a
processor and often a
crypto-graphically
enhanced co-processor.

Smart Cards: Computer Architecture

Features:
• Accelerated Software

 Cryptography
• Java Card
• Windows for Smart Cards
• Code Compression
• Secure Memory Spaces

CWRU EECS 314 6

An example of the software handshaking protocol is shown below

Smart Cards: Hardware/Software Co-Design

CWRU EECS 314 7

Instruction Set Architecture

Design Abstractions

• Coordination of many levels of abstraction

Performance Issues
Speed
Power
Size

Hardware
Digital Design
Circuit Design

transistors

I/O systemProcessor

Datapath & Control

Memory

Software
Operating

System
(Linux)

Application (Netscape)

Compiler
Assembler

CWRU EECS 314 8

“The Megahertz Myth.”

Why the clock speed of a
computer isn’t an accurate
way to compare system
performance.
Overall system design and
processor-architecture
differences affect real-world
application performance,
otherwise you might be
fooled by what Jon terms
“The Megahertz Myth.”

--Jon Rubinstein, Apple
Senior VP of Hardware

CWRU EECS 314 9

High Performance: Video Graphic Architectures
DirectX is a set of components, developed to provide Windows-based programs with
high-performance, real-time access to available hardware on current computer systems.

DirectX enables any 3D
hardware with Environment

Mapped Bump Mapping
(EMBM)

improves the visual realism
of 3D rendered scenes.

CWRU EECS 314 10

Instruction Set Architecture

A very important abstraction: Instruction Set Architecture
• interface between hardware and low-level software

• standardizes instructions, machine language bit patterns, ...

• advantage: different implementations of the same architectur

• disadvantage: sometimes prevents using new innovations

 True or False: Binary compatibility is important? True or False: Binary compatibility is important?

 Modern instruction set architectures:
 PowerPC, DEC Alpha, MIPS, SPARC, HP, 80x86/Pentium/K6*

Yes (Microsoft/Intel alliance) No - (Unix, Linux, C++, Java)
Yes - Sales, Marketing No - Speed, Engineers, Programmers

CWRU EECS 314 11

Design Abstractions: DVD

CWRU EECS 314 12

An early DVD version

CWRU EECS 314 13

High Performance: Video Graphic Architectures

http://www.nvidia.com

CWRU EECS 314 14

Processor: 71 bits
System Clock: 0.5 Mhz
Memory: 1024 words

An early XBOX version

http://www.dcs.warwick.ac.uk/~edsac

Processor: 71 bits
System Clock: 0.5 Mhz
Memory: 1024 words
Graphics: 16x36 bits
Game Cartridge: Tic-Tac-Toe
Codename: EDSAC
Year: 1952

CWRU EECS 314 15

Brief history
ENIAC: 1940, 18000 Vacuum tubes, 0.1 Mhz, 150 Kwatts,

first general purpose computer,10000 feet2,
90% down time, Plugboard programming (ROM)

EDSAC: 1949, 3000 Vacuum tubes, 0.5 Mhz, 12 Kwatts,
first stored-program computer to operate.

EDVAC: 1956 operational, 1944 designed, 3600 tubes,
10k diodes, 1 Mhz, crashed every 8 hours.

UNIVAC 1: 1951, 1st commerical computer, 5400 tubes, 18k
diodes, 2.25 Mhz, 352 feet2. Sales: 43. Cost $750K.

IBM 701: 1952, total 19 leased, $15000 per month.

UNIVAC 1107:1960s, Case Institute of Technology, CWRU,
http://www.fourmilab.ch/documents/univac/case1107.html

CWRU EECS 314 16

Design Abstractions

High Level Language
Program (e.g., C)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Control Signal
Specification

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
Program (MIPS)

Assembler

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

An abstraction omits unneeded detail,
helps us cope with complexity
An abstraction omits unneeded detail,
helps us cope with complexity

Assembly Language
Program (e.g. MIPS)

Compiler
lw $t0,0($2)
lw $t1,4($2)
sw $t1,0($2)
sw $t0,4($2)

Instruction Set Architecture

CWRU EECS 314 17

C Operators/Operands (page 9 of K&R)

• Arithmetic operators: +, -, *, /, % (mod), &, |, ^
• Assignment statements:

Variable = expression;
celsius = 5 * (fahr - 32) / 9;

• Operands:
Variables: a, b, c, r0, r1, celsius
Constants: 0, 1000, -17, 15, 0xf3, 017

Note: we begin at chapter 3 of the text book

• Declaration (announces the properties of variables)
• Definition (declaration that allocates memory):

int r3; /* declare r3 as a signed integer */

CWRU EECS 314 18

Assembly Operators
• C Semantics: register int rd, rs, rt;

rd = rs <op> rt;

• Syntax: <op> $rd, $rs, $rt
 <op>: Opcode (or operator) by name
 $rd: Destination, operand getting result
 $rs: 1st source operand for operation
 $rt: 2nd source operand for operation

• Called an (assembly language) Instruction
• Example

add $r1,$r2,$r3 # C Lanaguage: r1=r2+r3;

CWRU EECS 314 19

Assembly Operators/Instructions
• MIPS Assembly Syntax is rigid:

1 operation, 3 variables
Why? Keep Hardware simple via regularity
Note: Unlike C each line of assembly contains

at most 1 instruction

• Break into more primitive instructions
add a, b, c # a = sum of b & c
add a, a, d # a = sum of b,c,d
sub a, a, e # a = b+c+d-e

• How do following C statement?
 a = b + c + d - e; /* a = sum of b, c, d minus d */

• # is a comment terminated by end of the line

CWRU EECS 314 20

Compilation
• Example: compile by hand this C code:

f = (g + h) - (i + j);

• First sum of g and h. Where put result?
add f,g,h # f contains g+h

• Now sum of i and j. Where put result?
–Cannot use f !
–Compiler creates temp variable to hold sum: t1

add t1,i,j # t1 contains i+j

• Finally produce difference
sub f,f,t1 # f=(g+h)-(i+j)

CWRU EECS 314 21

• In general, each line of C produces many assembly instructions

–One reason why people program in C vs.
Assembly; fewer lines of code

–Other reasons?

Compilation Summary
• C statement (5 operands, 3 operators):

f = (g + h) - (i + j);

Portability, Optimization

• Becomes 3 assembly instructions
(6 unique operands, 3 operators):

add f,g,h # f contains g+h
add t1,i,j # t1 contains i+j
sub f,f,t1 # f=(g+h)-(i+j)

• Big Idea: compiler translates notation from 1 level of abstraction to
lower level

CWRU EECS 314 22

Registers: Performance issue
• Unlike C++, assembly instructions cannot use

variables
Why not? Keep Hardware Simple

• Instruction operands are registers:
– Limited to 32 registers in MIPS ($r0 - $r31)
– Also, each MIPS register is 32 bits wide
– The width of the register is called the word size
– C language “int” is the word size of the register

Why 32? Smaller is faster (based on technology)

CWRU EECS 314 23Ref: http://www.laynetworks.com/users/webs/cs12_2.htm

Pentium I: registers example
Process:0.8-micron 5 Volt BiCMOS
Year: 1993 / 3.1 million transistors
Clock: 60 or 66 MHz

CWRU EECS 314 24

Compilation using Registers

• Compile by hand using registers:

f = (g + h) - (i + j);
assign registers
$r5=“f”, $r1=“g”, $r2=“h”

 # $r3=“i” $r4=“j”

• MIPS Instructions:
add $r6,$r1,$r2 # $r6 = g+h
add $r7,$r3,$r4 # $r7 = i+j
sub $r5,$r6,$r7 # f=(g+h)-(i+j)

CWRU EECS 314 25

Arithmetic operators
• /* default */ register int r0,r1,…,r31;
• /* explicit */ register signed int r0,…;
• add $rd,$rs,$rt rd = rs + rt;
• sub $rd,$rs,$rt rd = rs - rt;
• addi $rt,$rs,signed16 rt = rs + 1847;
• subi $rt,$rs,signed16 rt = rs - 1931;

• register unsigned int r0,r1,…,r31;
• addu $rd,$rs,$rt rd = rs + rt;
• subu $rd,$rs,$rt rd = rs - rt;
• addiu $rt,$rs,signed16 rt = rs + 1847;

• What’s missing from unsigned? • subiu? Do we need it?

• subiu $rt,$rs,1931? addui $rt,$rs,-1931

CWRU EECS 314 26

Pseudo instructions: move
• Suppose we only had add, sub, addi, subi instructions

 How could we do the following C language operation?
register signed int r0=0, r1, r2, r5, r6;
r2 = r6;

addi $r2,$r6,0 # also: subi $r2,$r6,0

• Pseudo instructions extend the assembly language by
substituting with other machine instructions:

move $rd,$rs # addi $r2,$r6,0

also
add $r2,$r6,$r0 # also: sub $r2,$r6,$r0

Note: that some processors (i.e. Mips, Sun Microsystems,
sparc) hard code $r0 to zero.

CWRU EECS 314 27

Pseudo instruction: li, load immediate
• Suppose we only had add, sub, addi, subi instructions

 How could we do the following C language operation?
register signed int r0=0, r1, r2, r5, r6;
r2 = 1847;

addi $r2,$r0,1847 # mips $r0 is always zero

• Pseudo instructions extend the assembly language by
substituting with other machine instructions:

li $rd,signed16 # addi $r2,$r0,signed16

CWRU EECS 314 28

bitwise C operators
• /* default */ register int r0,r1,…,r31;
• /* explicit */ register signed int r0,…;
• and $rd,$rs,$rt rd = rs & rt;
• or $rd,$rs,$rt rd = rs | rt;
• xor $rd,$rs,$rt rd = rs ^ rt;
• not $rd,$rs rd = ~rs; /* pseudo instruction */
• andi $rt,$rs,signed16 rt = rs & 1847;
• ori $rt,$rs,signed16 rt = rs | 1931;
• xori $rt,$rs,signed16 rt = rs ^ 1931;
• why is there no “noti”?
• Is the follow correct?
• /* explicit */ register unsigned int r0,r1,…,r31;
• andu $rd,$rs,$rt rd = rs & rt;
• Use “and”, Bitwise operators are not arithmetic operators!

CWRU EECS 314 29

Pseudo instructions: clear & not

• How is the“clear $rd” pseudo-instruction implemented?

clear $rd # xori $rd,$rd,$rd

• review bitwise operators (looking at 1 bit at a time):
not: 0 = ~1; 1 = ~0;
and: 1 = 1 & 1; 0 = 0 & x; 0 = x & 0; /* conclusive */
or: 0 = 0 | 0; 1 = 1 | x; 1 = x | 1; /* inclusive */
xor: 0 = 0 ^ 0; 0 = 1 ^ 1; 1 = 0 ^ 1; 1 = 1 ^ 0;

also called exclusive or, difference, mod 2 add

• How is the“not rd,rs” pseudo-instruction implemented?

not $rd,$rs # xori $rd,$rs,0xffff

CWRU EECS 314 30

Pseudo instructions: Multiply and Divide

• mul $rd, $rs, $rt # signed pseudo instruction
– mult $rs, $rt # (hi:lo)64 = rs32 * rt32

– mflo $rd # rd = lo;
• mulou $rd, $rs, $rt # unsigned pseudo instruction

– multu $rs, $rt # (hi:lo)64 = rs32 * rt32

– mflo $rd # rd = lo;

• div $rd, $rs, $rt # pseudo instruction
– div $rs, $rt # (quotient=lo rem=hi)64 = rs32 / rt32

– mflo $rd # rd = lo;
• rem $rd, $rs, $rt # pseudo instruction

– div $rs, $rt # (quotient=lo rem=hi)64 = rs32 / rt32

– mfhi $rd # rd = hi;

CWRU EECS 314 31

Shift instructions: sll, srl, sra

• register unsigned int r0,r1,…,r31;
• sll $rd,$rt,const5 rd = rt << 11; /* rd = rt * 211 */
• srl $rd,$rt,const5 rd = rt >> 21; /* rd = rt / 221 */

Do we need shift instruction since we have Mul & div?
No, shift left/right can be done with mul/div instructions

example: sra $r2,$r2,4
addi $r1,$r1,16 # 16= 24

div $r2,$r1

• register int r0,r1,…,r31;
• sra $rd,$rt,const5 rd = rt >> 4; /* rd = rt / 24 = rt / 16 */

Performance: shift instructions are faster than mul/div
C Language allows programmer access to shift via >> << ops

