
EECS 281: Test 2 (4 pages) Due: Tuesday, October 12, 2004

Name: Email: Grade: (100 points max)

1. (16 points) Using C++ data types for a machine that uses a char of 8-bits, convert the following into two’s

complement big-endian binary and if not, then show why not?:

Give unsigned char range: 0 to 255

Give signed char range: −128 to +127

unsigned char x = ’C’; 01000011

unsigned char x = 0xff; 11111111

unsigned char x = 129; 10000001

signed char x = −’C’; 10111101

signed char x = −45; 11010011

signed char x = −129; Range of signed char is −128 to +127, hence −129 is out of range

2. (16 points) Using C++ data types for a machine that uses a char of 10-bits, convert the following into

two’s complement big-endian binary and if not, then show why not?:

Give unsigned char range: 0 to 1023

Give signed char range: −512 to +511

unsigned char x = ’C’; 0001000011

unsigned char x = 0xff; 0011111111

unsigned char x = 129; 0010000001

signed char x = −’C’; 1110111101

signed char x = −45; 1111010011

signed char x = −129; 1101111111

1

3. (5 points) Using C++ operator precedence, add the correct parenthesis (signed int a, b, c, d, e, w):

w = a * b + c | d ; w = ((a * b) + c) | d ;

w = a & b | c + d * e; w = ((a & b) | (c + (d * e)));

4. (5 points) Using C++ operator precedence, remove as many as possible parenthesis without changing the

meaning:

w = ((a + b) * c); w = (a + b) * c

= ((a * b) & (c | d)); w = a * b & (c | d)

5. (20 points) Using C++ convert the following into two’s complement big-endian binary that machine that

uses a char of 4-bits, where unsigned char u, a=0x4, b=0x7, c=0xf; signed char s, w=0x4, x=0x7, y=−1; For

addition and subtraction indicate if overflow and/or carry has occurred. Show work.

u = (∼ b)+1; u = 1000 + 1 = 1001

u = a & b; u = 0100 & 0111 = 0100 (Bitwise AND)

u = a ˆ b; u = 0100 ˆ 0111 = 0011 (Exclusive OR)

u = a + b; u = 0100 + 0111 = 1011 (Addition, There is no overflow since both numbers are unsigned)

u = c >> 5; u = 1111 >>5 = 0000 (Overflow during the fifth shift)

s = − x; x = 0111, -x is going to be -7. s = 1001

s = w | x; s = 0100 | 0111 = 0111

s = w + x; s = 0100 + 0111. There is an overflow causing wrong results.

s = w − x; s = 0100 − 0111 = -3 = 1101

s = y >> 5; s = −1 = 1111. s >> 5 = 1111,overflow during the fifth shift. s is signed number

2

6. (5 points) Convert the 24-bit number 0x100457 to mime base64: E A R X

0x100457 = 0001 0000 0000 0100 0101 0111. For base64 conversion, 6 bits have to be combined at once.

Hence 0x100457 = 000100 000000 010001 010111 = 4 0 17 23

From the table 4 = E , 0 = A, 17 = R, 23 = X.

7. (5 points) Write a ”single” C code statement of setting both bit d3 and bit d1 to 0 in the variable char a and all

other bits unchanged. (Note: a big endian bit position of char is d7d6d5d4d3d2d1d0)

A quick solution is : ”a = a & ¬(1<<3) & ¬(1<<1);” and the code could be cleaned up as follows: ”a &= ¬(1<<3)

& ¬(1<<1);” ⇒ ”a &= 111101112 & 111111012 ;” ⇒ ”a &= 111101012;” ⇒ ”a &= 0xF5;”

8. (5 points) Write the ”best” single C code statement of setting both bit d3 and bit d1 to 0 in the variable char a

and all other bits unchanged. (Hint: a ?= 0x??;)

”a &= 0xF5;”

9. (10 points) Write the C code function to return 1 if an integer if odd parity and 0 otherwise: unsigned int

odd(unsigned int a); (note: multiply and divide not allowed). Example: odd(0x1a) is 1.

Best Code:

int odd(unsigned int a) { return bcount(a) & 1; }

bcount(a) is from problem 8 of Homework 4 Solutions

10. (13 points) Give the n-cube, k-map, and SOP of the f(a,b,c) minterms for (3, 5, 6). Can this function be further

minimized?

~a = 0

a = 1

00 11 1001

110

b&c~b&~c b&~c~b&c
bca

110

000 001

010

101

111

100

Non−min SOP = ~a&b&c | a&~b&c | a&b&~c

Full Cubes = 0−cubes = points = { 011 101, 110 }

101

011

Min SOP = ~a&b&c | a&~b&c | a&b&~c

Can not merge diagonals, already at minimum to begin with.

011
Min Cubes = { 011, 101, 110 }

Figure 1: f(a,b,c) minterms for (3,5,6)

3

x1. (extra credit, 5 points) Minimize the f(a,b,c) minterms for (0,1,2,3). Show k-map, coverings on the k-map, and

give minimized SOP.

~a = 0

a = 1

00 11 1001

b&c~b&~c b&~c~b&c
bca

010011

k−map

000Minterms = { 0, 1, 2, 3 } 001

~a

Figure 2: f(a,b,c) minterms for (3,5,6)

x2. (extra credit, 5 points) Minimize the f(a,b,c) minterms for (0,1,2,3) and a Don’t Care minterm of (4,5,6,7).

Show k-map, coverings on the k-map, and give minimized SOP.

~a = 0

a = 1

00 11 1001

b&c~b&~c b&~c~b&c
bca

010011

k−map

000Minterms = { 0, 1, 2, 3 } 001

100 101 111 110

1 or TRUE
Don’t care minterms of (4,5,6,7} can be taken as a "1"

and all the 8 1’s can be combined to give a "1" or a TRUE" output

Figure 3: f(a,b,c) minterms for (3,5,6)

x3. (extra credit, 5 points) Minimize the f(a,b,c,d) minterms for (0,1,2,3) and a Don’t Care minterm of (4,5,6,7).

Show k-map, coverings on the k-map, and give minimized SOP.

~a&~b

~a&b

00 11 1001

c&d~c&~d c&~d~c&d
cdab

010011

k−map

000 001

100 101 111 110

~a

Minterms = { 0, 1, 2, 3 }

a&b

a&~b

Figure 4: f(a,b,c) minterms for (3,5,6)

4

