
SNUG San Jose 2002 1 C/UNIX Functions for VHDL Testbenches

C/UNIX Functions for VHDL Testbenches

Michael J. Knieser Francis G. Wolff Chris A. Papachristou

Rockwell Automation Case Western Reserve
University

Case Western Reserve
University

mjknieser@ra.rockwell.com fxw12@po.cwru.edu cap2@po.cwru.edu

Abstract
A VHDL library is presented here which allows a designer to quickly develop test benches,
monitors and virtual In Circuit Emulators (ICE) for simulation. This library mimics most of the
useful C string functions, C file processing functions and UNIX-like pattern matching functions.
This allows the VHDL designer to think in the C/UNIX language paradigm. These features are
demonstrated for a basic virtual ICE-wrapper test bench implementation.

1.0 Introduction
When generating test benches for testing a hardware design, there are many ways this test bench
can be written. There are third party test bench generation tools and languages. However to
maintain a design with its tests in the most neutral format, the design and its tests should be
described in the most neutral format. For hardware designs the most neutral format would be
VHDL or Verilog. For software the most neutral format would be ANSI C.

For some designers, the desire is to use C as the test bench description to test the hardware
design in VHDL or Verilog. This is achievable; however, this is accomplished through hardware
simulation tool foreign interfaces. Since this method requires simulation dependent interfaces,
this would not be the most neutral format to describe the hardware test bench.

The issue with C programmers is not so much the VHDL language syntax but the need of
including standard C libraries [1] such as string and stream file I/O. For example, C
programmers find it difficult to write “printf(“i=%d\n”, i);” as
“write(line,string’(“i=”)); write(line, i); writeline(output, line);”.

In order to please those designers desiring to use C as the test bench description and maintain the
most neutral format for describing the test bench and avoid language syntax switching, the most
useful C functions should be implemented in VHDL or Verilog. This paper discusses the
implementation details of emulating C/UNIX functions in the VHDL language.

2.0 Issues implementing C functions within VHDL
There are many issues implementing C functions in VHDL. There are dissimilarities and
similarities. Unlike VHDL, C makes no distinction between a function and a procedure (i.e.
functions can be used like procedures. Unlike C, VHDL supports concurrency in addition to the

SNUG San Jose 2002 2 C/UNIX Functions for VHDL Testbenches

C sequential language. These issues reveal some of the inherit difficulties of converting C
language algorithms into VHDL.

2.1 Why not do C++?
The main limiting factor for not implementing C++ functions is that VHDL does not have
language support for C++ like objects. Since C++ builds on C traditional libraries, the use of any
preprocessors which could support C++ objects was avoided in favor of using plain C.

2.2 Pointers
VHDL supports pointer access (i.e. VHDL keyword “access”) in a very restrictive way. It does
not support pointer arithmetic and address referencing. C statements like “char s[10],
*p=s+2;” or “strcpy(p, &s[2]);” or “strcpy(p, s+2);” are not possible in VHDL. Since
VHDL has strict typing it, disallows the C language type casting as shown as follows: “p =
(char *)integer_pointer;” The C concept of strings cannot be directly equivalent to VHDL
due to these limitations.

2.3 String Processing
There are conceptual differences between C and VHDL text strings. In C, a string is an array of
character integers. Since characters behave as small integers, they can be easily used in
arithmetic expressions (i.e. “char c; c=c−−−−’A’+32;”). In VHDL, a string is an array of
enumerated character types [2], described as “TYPE string IS ARRAY (POSITIVE RANGE <>)
OF character;” and the definition of a character is shown as follows:

TYPE character IS (NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, LF,
VT, FF, CR, SO, SI, DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM,
SUB, ESC, FSP, GSP, RSP, USP, ' ', '!', '"', '#', '$', '%', '&', ''',
'(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C',
'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q',
'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', '\', ']', '^', '_',
'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{',
'|', '}', '~', DEL);

The definition of string in C (i.e. “char s[10];”) represents the maximum workspace and the
string length varies within the allocated workspace. In VHDL, the string definition and string
length are the same (i.e. “VARIABLE s: string(1 TO 10);”). These fixed length strings in
VHDL make string processing unfriendly. In C, the string index begins with 0 and VHDL
begins with 1. The use of a different starting index does not present any real difficulty in
translating.

In C, the end of a string is terminated by a special character (i.e. ‘\0’). If the string terminator is
not within the allocated workspace, the string copy function in C will copy beyond the
workspace over writing other data in the user’s workspace. In this way, VHDL string processing
is actually safer to use because the allocated string length is always known.

SNUG San Jose 2002 3 C/UNIX Functions for VHDL Testbenches

2.4 Most common string functions
C prototypes

#include <strings.h>
char *strcpy(char *dest, const char *src);
char *strcat(char *dest, const char *src);
int strcmp(const char *s1, const char *s2);
size_t strlen(const char *s);

VHDL prototypes
LIBRARY C;
USE C.STRINGS_H.ALL;
procedure strcpy(dest: OUT string; src: IN string);
procedure strcpy(dest: OUT string; src: IN character);
procedure strcat(dest: INOUT string; src: IN string);
function strcmp(s1: IN string; s2: IN string) return integer;
function strlen(s: IN string) return integer;

The strcpy function copies the source string up to the allocated string length or the terminating
VHDL NUL character to the destination string. The destination string will be truncated if the
source string is longer than the allocated destination space. Since there is only one unique source
of array type, the VHDL strcpy allows for typeless string constants. This allows writing
“strcpy(s, “hello”);” instead of “strcpy(s, string’(“hello”));” Special cases for
copying characters were also added: strcpy(s, c); or strcpy(s, ‘c’);

The basic VHDL for “strcpy” is shown as follows:
procedure strcpy(dest: OUT string; src: IN string) is
 variable dj: integer:=dest’left;
 variable sj: integer:=src’left;
begin
 loop
 if dj>dest'right then dest(dest'right):=NUL; exit; end if;
 if sj>src'right then dest(dj):=NUL; exit; end if;
 if src(sj)=NUL then dest(dj):=NUL; exit; end if;
 dest(dj):=src(sj); dj:=dj+1; sj:=sj+1;
 end loop;
end procedure;

Another difference between the C and VHDL string copy is that the strcpy does not return
anything. In addition, VHDL knows the length and it will not overwrite beyond the allocated
length of the string. The strcpy also allows for using array slices: “strcpy (s, t(4 to
t’length));”.

The strcat function appends the source string to the destination string overwriting the NUL
character at the end of destination, and then adds a terminating NUL character. The strcmp
function compares two strings and returns the zero if equal, positive if s1 is greater and negative
if s1 is less than s2. The strlen function returns the number of characters in the string, not
including the terminating NUL character.

2.5 Passing variable number of arguments

In C, a function can have a variable argument list by using the “varargs.h” library and the
ellipsis operator “…”. By using the VHDL default argument assignment, variable argument lists
can be emulated [3] in a limited way. This requires the pre-determining of the largest argument
list or worst case situation as shown below:

procedure fprintf
 (F : OUT text;
 Format : IN string;

SNUG San Jose 2002 4 C/UNIX Functions for VHDL Testbenches

 A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8 : IN string := FIO_NIL;
 A9 , A10, A11, A12, A13, A14, A15, A16: IN string := FIO_NIL;
 A17, A18, A19, A20, A21, A22, A23, A24: IN string := FIO_NIL;
 A25, A26, A27, A28, A29, A30, A31, A32: IN string := FIO_NIL
);

2.6 Passing Different Data Types
Variable argument data types are not directly recognized syntactically in the C language at
compile time. The format control string within the printf function indicates which data types
need to be converted for output. For example “printf(“%s %d”,a, b)” will interpreted
through the format string the variable, a, as a character string (i.e. %s) and the variable, b, as an
integer (i.e. %d).

The problem is that VHDL has strict data typing and VHDL function overloading is used to
overcome this issue. The overloaded VHDL pf function can be used to convert all data types to a
common string data type. For example, in C the “printf(“%s %d”,a,b)” would be translated to
“printf(“%s %d”,a,pf(b))” in VHDL. The following shows a sample list of overloaded
functions:.

function pf (Arg: std_logic_vector) return string;
function pf (Arg: std_ulogic_vector) return string;
function pf (Arg: bit_vector) return string;
function pf (Arg: integer) return string;
function pf (Arg: character) return string;
function pf (Arg: string) return string;

The pf functions can be avoided by permutating the data types with additional overloaded
functions. For example, the following overloaded printf functions were developed.

procedure printf(format: string; Arg1: string; Arg2: string);
procedure printf(format: string; Arg1: integer; Arg2: string);
procedure printf(format: string; Arg1: string; Arg2: integer);
procedure printf(format: string; Arg1: integer; Arg2: integer);

These overloaded functions allow the ability to mimic the C printf function as follows:
printf(“%s %d”, a, b);

For sscanf procedure the code skeleton would be as follows:
procedure sscanf(s:string; format:string; Arg1:string; Arg2:integer;
Arg3:std_logic_vector)
 variable si: integer:=1; variable fi: integer:=1;
begin
 isscanf(si, fi, s, format, Arg1);
 isscanf(si, fi, s, format, Arg2);
 isscanf(si, fi, s, format, Arg2);
end sscanf;

The variables si and fi point to the next character to look at in the scan string and format string,
respectively. Due to VHDL overloading, the correct isscanf data type procedure is linked.

2.7 Returning values
In C, a declared function can be treated as a procedure. In VHDL, the caller must use the return
value for a function. The nice feature of a function is that one can use it as part of a conditional
expression. For example, “if (sscanf(s, “%x %x”, &v1, &v2)==2) …” but unfortunately,
unlike C, VHDL functions are not allowed to pass values back (i.e. OUT, INOUT) through the
argument list. Unlike C, return values must be assigned and cannot be discarded. C makes no

SNUG San Jose 2002 5 C/UNIX Functions for VHDL Testbenches

distinctions between functions and procedures. For the VHDL sscanf, a function was added to
just return the number of matched arguments as shown as follows: “if (sscanf(s, “%x
%x”)=2) then …”.

In C, it is not uncommon to write “printf(“v1=%x\n”);” or “n=printf(“v1=%x\n”);”
interchangeably. However, in VHDL, the former example is a function and the latter a
procedure. It was decided to implement the most common usage of printf function as a VHDL
procedure.

3.0 Common VHDL C Testbench Functions
With the differences between C and VHDL, this paper covers the following C functions that
were converted to VHDL which were determined to be the most common. Each section will
discuss the C function as it is defined and the VHDL implementation.

3.1 printf, fprintf & sprintf
C prototypes

#include <stdio.h>
int printf (const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);
int sprintf(char *str, const char *format, ...);

VHDL prototypes
LIBRARY C;
USE C.STDIO_H.ALL;
procedure printf (format:IN string; ...);
procedure fprintf(stream:OUT text; format:IN string; ...);
procedure sprintf(str: OUT string; format:IN string; ...);

procedure printf (ret: OUT integer; format:IN string; ...);
procedure fprintf(ret: OUT integer; stream:OUT text; format:IN string; ...);
procedure sprintf(ret: OUT integer; str: OUT string; format:IN string; ...);

The functions in the printf family output according to a format control string. The printf function
writes output to the standard output stream, stdout (i.e. same as “fprintf(output, format,
…);”). The fprintf function writes it’s output to the file variable . The sprintf function writes
it’s output to a character string.

3.2 scanf, fscanf & sscanf
C prototypes

#include <stdio.h>
int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *str, const char *format, ...);

VHDL prototypes
LIBRARY C;
USE C.STDIO_H.ALL;
procedure scanf(format:IN string; ...);
procedure fscanf(stream:OUT text; format:IN string; ...);
procedure sscanf(str: IN string;format:IN string; ...);

procedure scanf(ret:OUT integer; format:IN string; ...);
procedure fscanf(ret:OUT integer; stream:OUT text; format:IN string; ...);
function sscanf(str:IN string; format:IN string) return integer;

SNUG San Jose 2002 6 C/UNIX Functions for VHDL Testbenches

The scanf family of functions scans the input according to a format control string. This format
may contain conversion specifiers. The results from such conversions are read from the standard
input stream stdin for scanf function, read from the file stream for fscanf and read from the
character string for sscanf. Upon successful completion, these functions return the number of
successfully matched and assigned input items.

3.3 Line and Character Stream I/O
C prototypes

#include <stdio.h>
char *gets(char *s);
char *fgets(char *s, int size, FILE *stream);
int puts(const char *s);
int fputs(const char *s, FILE *stream);
int fputc(int c, FILE *stream);
int putchar(int c);
int fgetc(FILE *stream);
int getchar(void);

VHDL prototypes
LIBRARY C;
USE C.STDIO_H.ALL;
procedure gets(s:OUT string);
procedure fgets(s:OUT string; size:IN integer; stream:OUT text);
procedure puts(s:IN string);
procedure fputs(s:IN string; stream:OUT text);
procedure fputc(c:IN character; stream:OUT text);
procedure putchar(c:IN character);
prodecure fgetc(c:OUT character; stream:OUT text);
procedure getchar(c:OUT character);

The VHDL fgets and fputs line I/O functions are shown as follows:
procedure fgets (s: OUT string; size: IN integer; stream: OUT text) is
 variable LineBuffer: line;
begin
 readline(stream, LineBuffer); strcpy(s, LineBuffer.ALL & NUL);
end procedure;

procedure gets (s: OUT string) is
 variable LineBuffer: line;
begin
 readline(INPUT, LineBuffer); strcpy(s, LineBuffer.ALL & NUL);
end procedure;

The VHDL readline procedure is equivalent to a string of text with a terminating newline. For
text files this mapping is straightforward.

The fgetc and fputc character I/O functions are limited to one open input and one output file at a
time. The limitation is due to using VHDL shared variables and the procedures can not
distinguish what file stream it is currently looking at.

procedure fgetc(c: OUT character; fp: OUT text) is
begin
 if fgetc_i = 0 then
 readline(fp, fgetc_buffer); fgetc_i:=1;
 end if;
 if fgetc_i > fgetc_buffer'length then
 readline(fp, fgetc_buffer); fgetc_i:=1; c:=LF;
 else
 if endfile(input) then
 c:=NUL;

SNUG San Jose 2002 7 C/UNIX Functions for VHDL Testbenches

 else
 c:=fgetc_buffer(fgetc_i); fgetc_i:=fgetc_i+1;
 end if;
 end if;
end fgetc;

3.4 Common string functions simulating pointer arithmetic
VHDL prototypes
LIBRARY C;
USE C.STRINGS_H.ALL;
procedure strcpy(dest: OUT string; src: IN string);
procedure strcpy(dest: OUT string; src: IN string; si: IN integer);
procedure strcpy(dest: INOUT string; di: IN integer; src: IN string);
procedure strcpy(dest: INOUT string; di: IN integer; src: IN string; si: IN integer);
procedure strcat(dest: INOUT string; src: IN string);
procedure strcpy(dest: OUT string; src: IN string; si: IN integer);
procedure strcpy(dest: INOUT string; di: IN integer; src: IN string);
procedure strcpy(dest: INOUT string; di: IN integer; src: IN string; si: IN integer);
procedure strlen(s: IN string; si: IN integer);

By heavily using VHDL overloading, functions were added to allow limited pointer like
arithmetic on strings. The above functions allows all possible cases of “strcpy(dest + di,
src + si);” For example: “strcpy(s, t(4 to t’length))” can be written better as
“strcpy (s, t, 4);” Also, “strcat(dest + di, src + si);” and “strlen(s + si);”
are also supported.

3.5 Character processing
C prototypes

#include <ctype.h>
int isalpha(int c);
int isupper(int c);
...

VHDL prototypes
LIBRARY C;
USE C.CTYPE_H.ALL;
function isalpha(c: character) return boolean;
function isupper(c: character) return boolean;
function islower(c: character) return boolean;
function isdigit(c: character) return boolean;
function isxdigit(c: character) return boolean;
function isalnum(c: character) return boolean;
function isspace(c: character) return boolean;
function ispunct(c: character) return boolean;
function isprint(c: character) return boolean;
function isgraph(c: character) return boolean;
function iscntrl(c: character) return boolean;
function isascii(c: character) return boolean;
function tolower(c: character) return character;
function toupper(c: character) return character;

The complete “ctype.h” include library is implemented like the C version. The following
example shows the use of ctype functions by converting a file to lower case.

process
 variable c: character;
 FILE fp: text OPEN READ_MODE IS "debugio_h_testlib.sh";
 FILE fw: text OPEN WRITE_MODE IS "debugio_h_testlib.out";

begin
 while not endfile(fp) loop
 fgetc(c, fp);

SNUG San Jose 2002 8 C/UNIX Functions for VHDL Testbenches

 if isalpha(c) then
 fputc(tolower(c), fw);
 else
 fputc(c, fw);
 end if;
 end loop;
 fclose(fw);
 wait;
end process;

4.0 Applications of the C Functions
Two test benches were developed in order to demonstrate the features of this suite of C
functions. The first VHDL test bench tests the interface of a microprocessor. The second VHDL
test bench behaves as an in-circuit emulator (ICE) interfacing to a microprocessor.

4.1 Microprocessor Host Test Bench
A common suite of test benches when designing ASIC’s with an external microprocessor
interface is to have at least a functional host model of the desired microprocessor. This
functional model would have the specific interface and would have some method for easily
issuing microprocessor commands. Figure 3 shows a high-level architectural view of how this
test bench would be organized.

xcs xrd xwr xaddr. xdata stdin stdout

host_microprocessor_interface.vhd

ASIC_top_level.vhd

ROM.vhd

RAM.vhd

DW8051.vhd

custom_IP.vhd

cs rd wr addr. data

Figure 3: Microprocessor host test bench high-level architecture.

Within the “host_microprocessor_interface.vhd,” this test bench would have a main process that
would allow the test bench to be exercised. This main process is shown as follows.

process
begin
 wr <= ‘0’; rd <= ‘0’; cs <= ‘0’;
 data_out <= “ZZZZZZZZ”; address <= “xxxxxxxxxxxxxxxx”;

SNUG San Jose 2002 9 C/UNIX Functions for VHDL Testbenches

 printf(“Host Microprocessor shell (Version 1.0)\n”);
 printf(“Type ‘help’ for command list.\n”);

 loop
 printf(“Host => “);
 gets(what_next);
 if (sscanf(what_next,”help %s”) = 1) then
 printf(“help - Display’s current supported commands\n”);
 printf(“write <address> <data>- Write <data> to <address>\n”);
 printf(“read <address> <data> - Read <address> and expect <data>\n”);
 printf(“load hex - Marker to indicate hex data is next\n”);
 printf(“dump <start> <end> - Dump data from <start> to <end> addr\n”);
 printf(“config <parm>=<time> - Set <parm> to the <time> value\n”);

 elsif (sscanf(what_next,”write %x %x”) = 2) then
 sscanf(what_next,”write %x %x”,address,data_out);
 wait for CS_START_DELAY;
 cs <= ‘1’; wait for WR_START_DELAY;
 wr <= ‘1’; wait for WRITE_WIDTH;
 wr <= ‘0’; wait for CS_END_DELAY;
 cs <= ‘0’; wait for WR_END_DELAY;
 address <= “xxxxxxxxxxxxxxxx”; data_out <= “ZZZZZZZZ”;

 elsif (sscanf(what_next,”read %x %x”) = 2) then …
 elsif (sscanf(what_next,”dump %x %x”) = 2) then …
 elsif (sscanf(what_next,”load %s”) = 1) then …
 elsif (sscanf(what_next,”config %s=%d%s”) = 3) then …
 else
 -- passthru wrapper signals
 cs <= xcs; wr <= xwr; rd <= xrd; address <= xaddress;
 data_out <= xdata_out; xdata_in <= data_in;
 end if;
 end loop;
end process;

The above VHDL process would enable interactive toggling of the test bench and its interface to
the target ASIC. In addition, this process would enable the load and execution of a pre-designed
test for eventual regression testing.

4.2 In Circuit Emulator Wrapper Test Bench
Another common suite of test benches when designing and debugging ASIC’s it to create a in-
circuit emulator wrapper to effectively bypass certain logic and control the logic under test
through another means. Figure 4 illustrates a high-level architecture for an in circuit emulator
wrapper leveraging standard input and standard output as the secondary method for controlling
logic under test.

SNUG San Jose 2002 10 C/UNIX Functions for VHDL Testbenches

Scirocco Simulator

xcs xrd xwr xaddr. xdata stdin stdout

host_processor_interface.vhd

ASIC_top_level.vhd

ROM.vhd

RAM.vhd

custom_IP.vhd

ICE-wrapper.vhd

DW8051.vhd

File Input

File Output

cs rd wr addr. data

Figure 4: ICE test bench high-level architecture.

5.0 Conclusion
The most commonly standard C functions were written as C friendly as possible within VHDL.
These functions and libraries simplify and ease the coding of test benches and wrappers. These
libraries and their VHDL sources are freely available on the Internet [4].

6.0 References
[1] Kernighan, Brian, and Ritchie, Dennis, “The C Programming Language,” Prentice Hall,
1988.

[2] Ashenden, Peter J., “The Student’s Guide to VHDL,” Morgan Kaufmann Publishers, San
Francisco, 1998.

[3] Decaluwe, Jan, “PCK_FIO.vhd,” GNU General Public License, Easics NV, Interleuvenlaan
86, B-3001 Leuven, Belgium, jand@easics.be, http://www.easics.com/method/inhouse.html

[4] Case Western Reserve University, Electrical Engineering & Computer Science Department,
Computer Engineering Group, Cleveland, Ohio, http://bear.ces.cwru.edu/vhdl

mailto:jand@easics.be

	Introduction
	Issues implementing C functions within VHDL
	Why not do C++?
	Pointers
	String Processing
	Most common string functions
	Passing variable number of arguments
	Passing Different Data Types
	Returning values

	Common VHDL C Testbench Functions
	printf, fprintf & sprintf
	scanf, fscanf & sscanf
	Line and Character Stream I/O
	Common string functions simulating pointer arithmetic
	Character processing

	Applications of the C Functions
	Microprocessor Host Test Bench
	In Circuit Emulator Wrapper Test Bench

	Conclusion
	References

